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Maŕıa y nuestros hijos Lucas y Alex. Espero ser capaz de devolveros todo el tiempo que os merecéis y
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Symbols and Notation

This is the list of symbols most often used throughout the document with their default interpretation:

a scalar a

a vector a

x̂ estimate of x

µx image consisting in the pixel-by-pixel (temporal) average of several images
xt of the same scene taken at different time instants

EI [x] (spatial) average of the pixel values of image x

σ2
x image consisting in the pixel-by-pixel (temporal) variance of several images

xt of the same scene taken at different time instants

VarI [x] (spatial) variance of the pixel values of image x

θ, σ polar/slant angle

φ, τ azimuth/tilt angle

(x, y, z) 3D co-ordinates of a scene point

(u, v) co-ordinates of the projection of a scene point over the image plane (stan-
dard length units)

(i, j) image co-ordinates (in pixels)

ω solid angle

Ω projected solid angle

E irradiance

L radiance

λ wavelength

Λ set of wavelengths within the visible spectrum (approximately between 380
(blue) and 760 (red) nanometers )

N surface normal vector

S direction towards the only directional light source

n unit surface normal vector
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s unit direction towards the only directional light source

v unit direction towards the viewer

h unit angular bisector of v and s

La ambient radiance

Ld radiance of a directional light source

ρa(i, j) ambient reflectance at image cell (i, j)

ρb(i, j) body reflectance at image cell (i, j)

ρi(i, j) interface reflectance at image cell (i, j)

Cc
a(i, j), (Laρa(i, j))c ambient composite reflectance for colour channel c at image cell (i, j)

Cc
b (i, j), (Ldρb(i, j))

c body composite reflectance for colour channel c at image cell (i, j)

Cc
i (i, j), (Ldρi(i, j))

c interface composite reflectance for colour channel c at image cell (i, j)

mb(i, j) geometric factor for body reflectance at image cell (i, j)

mi(i, j) geometric factor for interface reflectance at image cell (i, j)

Dc
a(i, j) ambient illumination reflection term for colour channel c at image cell (i, j)

Dc
b(i, j) body reflection term for colour channel c at image cell (i, j)

Dc
i (i, j) interface reflection term for colour channel c at image cell (i, j)

Ic(i, j) number of electrons collected at image cell (i, j) for colour channel c

τ c(λ) filter transmittance for colour channel c

s(λ) spectral responsivity of the sensor

K(i, j) photo-response for image cell (i, j)

µdc(i, j) average dark charge for image cell (i, j)

N c
S(i, j) zero-mean random variable accounting for photon noise at image cell (i, j)

for colour channel c

Ndc(i, j) zero-mean random variable accounting for dark current shot noise at image
cell (i, j)

NR camera read-out noise

NQ quantization noise

Ac camera gain for colour channel c

µc(i, j) average intensity value for image cell (i, j) and colour channel c

N c(i, j) noise for image cell (i, j) and colour channel c

N c
e (i, j) noise for image cell (i, j) and colour channel c dependent on the number of

collected electrons

N c
f (i, j) noise for image cell (i, j) and colour channel c independent of the number

of collected electrons

Dc(i, j) output of the camera for colour channel c and image cell (i, j)

f camera focal distance

f/d camera F-number

Ri region i in the reference segmentation

R̂j region j in the segmentation output



Acronyms

This is the list of acronyms introduced throughout this documentation to name the different algorithms
presented:

C3E Colour Channel Coupling-based Edge detection algorithm (chapter 8)
C3S Colour Channel Coupling-based Segmentation algorithm (chapter 9)
CPAM Central Projection Assuming Method of lighting parameters esti-

mation
(chapter 5)

IS2R Image Segmentation by Scene Reconstruction (chapter 7)
OPAM Orthographic Projection Assuming Method of lighting parameters

estimation
(chapter 5)

R2CIU Robust Radiometric Calibration for Intensity Uncertainty estima-
tion algorithm

(chapter 6)

TEAV lighting Tilt Estimation by AVeraging (chapter 5)
TECA lighting Tilt Estimation by Centers Alignment (chapter 5)

Other acronyms corresponding to algorithms by other authors also appearing along the documentation
are the following:

B&P Bichsel and Pentland Shape from Shading algorithm [17] (chapter 7)
C&M Comaniciou and Meer image segmentation algorithm [29,30] (chapters 7,9)
GEV Gevers image segmentation algorithm [80] (chapters 7,9)
H&K Healey and Kondepudy camera radiometric calibration algo-

rithm [93]
(chapter 6)

KLN Klinker et al. image segmentation algorithm [129] (chapters 7,9)
L&R Lee and Rosenfeld lighting estimation method [141] (chapter 5)
M&G Meer and Georgescu edge detection algorithm [168] (chapter 8)
S&G Stokman and Gevers edge detection algorithm [79,262] (chapter 8)
Z&C Zheng and Chellapa lighting estimation method [311] (chapter 5)

Finally, other acronyms often used throughout this document are:

ACRM Approximate Color Reflectance Model
BRDF Bidirectional Reflectance Distribution Function
CCD Charge Coupled Device
CG percentage of Correctly Grouped pixels
DCNU Dark Current Non-Uniformity
DRM Dichromatic Reflection Model
FOM (Pratt’s) Figure of Merit
MVE Minimum Volume Ellipsoid estimator
NIR Neutral Interface Reflection model
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OS percentage of Over-Segmentation
PCA Principal Component Analysis
PCM Possibilistic C-means algorithm
PRNU Photo-Response Non-Uniformity
SPD Spectral Power Distribution
URM Unichromatic Reflection Model for metals
US percentage of Under-Segmentation



1

Introduction and Objectives

This chapter defines the problem which is addressed in this thesis. To this end, section 1.1 introduces
briefly the field of computer vision, section 1.2 states the problem for which is intended to provide a
solution and sets the goals to attain, and, finally, section 1.3 outlines this documentation.

1.1 The Computer Vision Problem

Almost any biological form is endowed with more or less sophisticated sensorial structures evolved to
provide information to the organism about the surrounding environment so as to be able to interact
with it. Without the information furnished by these sensors, it would be impossible to carry out
survival-related tasks such as recognizing the different entities populating the environment (species-
and group-mates, enemies, food, obstacles, etc.) or just navigating safely through the environment.

A large amount of sensorial structures can be found among the immense variety of known bio-
logical forms. Many of them appear in almost every species, differing amongst them in structure, in
capabilities and in the sort of information which is processed and finally got from the environment. In
all cases, however, information is recovered transforming first and processing next energy that reaches
the organism in a certain form —electromagnetic radiation, mechanical energy (i.e. acoustic waves),
etc.— which depends on the particular sensorial structure. The fact that a certain “sensor” has been
evolved by a species will depend, thus, on how likely is that the required energy form travels through
the environment where that species lives.

Vision is one of these structures. Probably, it is the most frequent in nature among the different
evolved animal forms. The fact that human beings depend so much on vision for their daily life and
that a huge amount of information can be extracted from the environment through vision have made
it as the object of study of lots of researchers throughout the world, coming from the most varied
disciplines for decades. The effort has been set off for not only the study of the structures that make
vision possible per se, but also regarding how to get the information about the environment which
is coded in the electromagnetic radiation in which it propagates. Throughout the years, terms such
as computer vision, computational vision or image understanding have been coined for referring to
somewhat overlapped aspects of this work. Aloimonos and Rosenfeld in [3] set for computer vision the
goal of determining both the visual information necessary for a given task and the procedures to obtain
such information from the data provided by the optical sensors utilized in the particular application
considered.

The set of processes involved in vision are often classified within a hierarchy which goes from what is
known as early or low-level vision through intermediate vision to high-level vision [286]. These notions
of low- and high-level vision are used as a matter of routine although there is not a definitive definition
for each. However, it is accepted that:

• Low-level vision is usually associated with the extraction of certain physical properties of the
environment, such as depth, 3D shape, object edges, surface material properties, etc.
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• High-level vision, however, has to do with problems such as the computation of shape properties
and spatial relationships, as well as with object recognition and classification. It is, therefore, more
related with the interpretation of the image and the use of the information recovered rather than
with the determination of the physical properties of scene objects. These processes typically depend
on the goals of the application together with the knowledge available about the objects expected
in the scene.

• Finally, processes within the domain of high-level vision that do not depend on knowledge about
the scene are typically classified as intermediate vision. Segmentation is one of the processes which
is sometimes located at this level.

Nevertheless, although it is usual thinking of vision as a sort of pipeline, where low-level processes
are in one end and high-level processes are in the other end, it is not clear that low-level processes
must end before the start of higher-level processes. It is rather a sort of distinction as for the type of
information entering and exiting every particular process.

Among the different research results obtained in computer vision throughout the last 30-40 years,
the most sound one is that emulating human vision is not so trivial as it seems because of the tremen-
dous apparent simplicity how humans get information from the outer world. In fact, computer vision
can be one of the most complex problems within the general goal of understanding and replicating in-
telligence, as indicates the fact that more than 50% of the neurons of the brain are devoted to vision [2].
Besides, most problems in early vision related with recovering scene properties admit, a priori, several
solutions, because of the lack of enough constraints, or because the problem is just badly defined [115].
On the other hand, the knowledge about biological vision systems accumulated throughout the last
thirty years is fragmented and is mostly confined in early processing stages, directly related with sen-
sor signals. It is not surprising, thus, that some ambitious attempts to provide visual capabilities to
machines have not produced the expected results.

However, potential applications of computer vision are so important that even partial and short-
term solutions have been, and in fact are, useful. Besides, since the first steps in image processing,
significative advances have taken place, leading to the development of systems able to carry out some
visual functions, sometimes in structured environments, but also in less controlled conditions in many
other times.

1.2 Problem Statement and Objectives

1.2.1 General discussion

To humans, an image is not just a random collection of pixels, but a meaningful arrangement of regions.
Despite the large diversity of shapes, colours and textures which can be contained in images, humans
have no difficulty interpreting them. We even agree about the different regions in the image and are
able to label them semantically in a hierarchy of different levels of detail, to distinguish an object to
one another but also to identify parts of the same object.

In computer vision, grouping parts of a general image into units that are semantically meaningful
is known as the process of image segmentation. This idea of segmentation has its roots in the research
carried out by the Gestalt psychologists in the early part of the twentieth century, who extensively
studied the preferences exhibited by human beings in grouping or organizing sets of shapes appearing in
the visual field [11]. They identified several factors that lead to human perceptual grouping: similarity,
proximity, continuity, symmetry, parallelism, closure and familiarity [36]. As a consequence, a strong
belief in these grouping mechanisms as organizers of the scene in meaningful units from which the
image could be understood arose and spread among the researchers. Since then, some of these clues
have been used as guidelines for many grouping algorithms in computer vision [155].

From a computational point of view, any process of grouping is inevitably associated with a criterion
of homogeneity H(·), which determines the properties of the wanted segments. The segmentation
problem has traditionally been formulated in a formal way in these terms, as a function of H(·), as
follows [26,32,108,153,220]:
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Fig. 1.1. Example of segmentation where the meaningful structures segmented coincide with scene objects
(algorithm C3S, chapter 9).

Given an image I and a homogeneity criterion H(·), find a partition P of I into a set of regions

R̂1, R̂2, ..., R̂n such that (by definition of partition,
⋃n

i=1 R̂i ⊆ I and R̂i

⋂
R̂j = ∅, ∀i 6= j):

(a) each R̂i is connected (between each pair of pixels p, q ∈ R̂i there is a path p = p1, p2, ..., pt =

q of adjacent pixels pk ∈ R̂i, k = 1, . . . , t, either in the sense of 4-connectivity or 8-
connectivity),

(b) H(R̂i) = true, ∀i = 1, . . . , n, and

(c) H(R̂i ∪ R̂j) = false, ∀i 6= j and R̂i and R̂j have a common boundary.

Broadly speaking, H(·) should aim at identifying meaningful structures in the image. From the most
general interpretation of the segmentation problem (even beyond the previous definition), such adjec-
tive, meaningful, can refer to:

(1) what higher-level vision processes intend to recognize, which makes segmentation an application
dependent task within the vision pipeline, or else

(2) perceptually coherent units assimilable to scene objects, which, to a certain extent, leads to thinking
of segmentation as a domain independent process.

While the former meaning alludes to vision tasks such as, for instance, the segmentation of the straight
lines of an image, the latter connotation is inherently more ambitious, since identifies meaningful
structures with objects and defines the goal of the segmentation task as the generation of data structures
which allow isolating the different objects present in the scene. Without doubt, this second meaning
corresponds to what comes readily to mind when thinking of image segmentation. By way of illustration
of a segmentation according to this last meaning, figure 1.1 provides the output of C3S, one of the
segmentation algorithms proposed in this thesis (chapter 9).

If H(·) is specified in the previous terms, however, the segmentation task becomes, at first sight,
an ill-posed problem because, to put H(·) in a formal way, the question “what is the image of an
object?” should be first answered, and it is not likely to find a unique answer. Intuition would probably
say the image of an object consists of a region of nearly constant colour, or, from the point of view
of the whole image, the intensity of any colour channel is a (perhaps noisy) piecewise constant bi-
dimensional function whose plateaus correspond to scene objects. Nevertheless, what is known as an
image is actually the result of sensing the electromagnetic radiation coming from the scene and, as will
be seen later, some images correspond to the previous model, as it is the case of the image of figure 1.2,
but, unfortunately, it is not the general case. Generally speaking, the intensity values provided at pixel
locations by a camera are a combination of:

• the illumination distribution,
• the reflection properties of scene objects,
• the geometry of the scene,
• the propagation medium, and
• the performance of the imaging sensor.

The physical laws that rule the processes of light propagation, reflection and image acquisition deter-
mine, thus, the final pixel value. By way of example, figure 1.3 shows what should be expected in a
general image. As can be observed in the profiles of the scanline, the image intensity is not piecewise
constant if curved objects appear in the scene or if glossiness can be appreciated.
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Fig. 1.2. Intensity profiles of the house image: [left] house; [right] plot of the intensity profiles for the red,
green and blue colour channels at scanline 150 (in white in the image).
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Fig. 1.3. Intensity profiles of a general image: [left] a general image; [right] plot of the intensity profiles for
the red, green and blue colour channels at scanline 100 (in white in the image).

If the scene effectively consists of quasi-planar surfaces and they do not show glossiness, effects
such as shading and specularities are hardly noticeable in the image, and areas of the scene of uniform
perceptual colour appear as regions of more or less constant colour intensity provided that shadows
and inter-reflections are avoided or are negligible. In this case, the model of a noisy piecewise constant
function is, thus, valid. Throughout the years, many segmentation algorithms have exploited this
assumption for both uniformly coloured and textured objects1 with pretty nice results for that kind of
images, as it is shown in figure 1.4 for the standard image house and the mean-shift-based algorithm
by Comaniciu and Meer [30]. However, when the effects of scene curvature are noticeable in the image,
one can obtain what is shown in figure 1.5 from the same algorithm.

In general, objects curvature and objects glossiness, together with other optical phenomena such
as shadows and inter-reflections, give rise to changes in image intensity not necessarily related to
object boundaries, what makes methods not taking into account them perform poorly with this sort of
images, typically producing over-segmentation. However, embedding a physics-based model of image

1 See [26] among many other existing surveys on the subject.
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Fig. 1.4. Segmentation results for the house image by the algorithm published in [29]: [left] original image;
[right] region contours.

Fig. 1.5. Segmentation results for images of curved objects by the algorithm published in [29]: [left] original
image; [right] region contours.

formation into the segmentation algorithm allows coping with those effects in a more suitable way. By
way of illustration, figure 1.6 provides the results produced for the two previously shown images by
the physics-based segmentation algorithm C3S (chapter 9).

Irrespectively of the physics- or non-physics-based approach taken, the segments resulting from the
segmentation of an image can be described in two different ways, contours and regions, what leads to the
two broad families of segmentation approaches: region-based and contour-based. These two approaches
need not be that different from each other: on the one hand, boundaries of regions can be defined to be
contours, and, on the other hand, if one enforces closure in a contour-based framework, then one can
get regions from a contour-based approach. The difference is more on whether the emphasis is put on
similarity or on dissimilarity. Nevertheless, vision researchers usually distinguish in the titles of their
papers between both approaches with terms such as edge detector, segmentation algorithm or related
variants. This is the reason why the title of this thesis refers to both broad families, although, as has
been said, from a theoretical point of view, one is the complementary of the other and, therefore, the
term image segmentation should be enough.

1.2.2 Objectives of this thesis

In order to contribute to the solution of the problem of image segmentation, this thesis addresses the
following set of goals:
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Fig. 1.6. Segmentation results for the physics-based segmentation algorithm C3S (chapter 9). In the upper
row, region contours are given superimposed in white over the original image.

(1) study the segmentation problem within the physics-based vision paradigm, taking into account all
the elements involved in the process of image formation, from the reflection of light in the scene
to the capture of the image by means of an optical sensing device;

(2) explore several unsupervised approaches and provide algorithms for each;
(3) consider physics-based models of image formation including ambient illumination;
(4) ensure the coverage of object transitions of the algorithms is not cut off from their theoretical

inception;
(5) work at the signal level, or, in other words, minimize the use of domain information within the

algorithm;
(6) take into account image noise models reasonably accurate in the derivation of the algorithm in

order to be able to set the corresponding parameters in an adaptive way; and
(7) compare the different algorithms developed with recognized segmentation and edge detection algo-

rithms, both physics- and non-physics-based.

In this list, goals (1) and (2) could be classified as the general objectives of the work which is going to
be presented throughout the following chapters. Goals (4) and (7), on the other hand, correspond to
deficiencies which have been found in many physics-based algorithms and in the pieces of work where
they were presented, and, for this reason, have been considered fundamental throughout the realization
of this thesis. Finally, goals (3), (5) and (6) intend to constitute added values of the algorithms to be
proposed.

Furthermore, this set of goals is intended to be achieved under the following constraints:

• the scenes are assumed to contain only uniformly coloured objects, not textured objects, except for
fine-grained textures which unavoidably can be present in the scene;

• the segmentation task will have to be achieved on the basis of an only image; and
• images have to be assumed to consist of one or several bands (i.e. gray-level and colour images).
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1.3 Thesis Outline

This documentation is organized into ten chapters and several appendices providing additional infor-
mation. Chapter 1 has introduced briefly the field of computer vision, has stated the problem for which
is intended to provide a solution, has set the goals to attain, and, finally, in this section, the structure
of this documentation is shown.

Chapter 2 is devoted to introducing the several aspects of the physical processes involved in the
formation of images in real cameras. The different sections provide a summary of the radiometrical
concepts used throughout the chapter, explain light-matter interaction and physics-based reflection
models and describe the model of operation of current optical imaging sensors. This chapter is intended
to cover all the aspects of the formation of the image with full detail, what means that, perhaps, in
some points exceeds what is strictly needed to understand the rest of this documentation.

Chapter 3 summarizes the most significant work related with physics-based segmentation and edge
detection, starting with a brief review on general approaches for image segmentation. A taxonomy for
physics-based segmentation algorithms is also introduced.

Chapter 4 focuses on the development of a general framework for image segmentation and edge
detection on the basis of physics-based image formation models. Besides, an experimental setup for
these sort of algorithms is presented and discussed, together with some new measures for characterizing
the performance of image segmentation algorithms.

Chapter 5 presents several algorithms for estimating the lighting distribution parameters of a scene,
what is needed by some segmentation algorithms relying on the physics of image formation. The model
of illumination assumed by these lighting estimation algorithms, although limited to ambient lighting
and an only point light source, is in accordance with the requirements of the segmentation algorithm
of chapter 7.

Chapter 6 introduces an algorithm called R2CIU for characterizing the noise sources affecting the
performance of current CCD cameras. The main purpose of this characterization is to estimate intensity
uncertainties to be incorporated in the segmentation algorithms of the following chapters.

Chapter 7 proposes a segmentation algorithm named IS2R based on estimating the reflectance of
objects surface and using it together with information of the shape of the scene to join pixels to the
currently grown region. To this end, the scene is partially reconstructed from the image data using a
shape from shading technique.

Chapter 8 studies the use of the coupling between colour channels in uniform reflectance areas to
find material changes in the image and presents an edge detection algorithm called C3E making use of
the results of the study.

Chapter 9 takes advantage of the complementarity between edge detection and image segmentation
to devise a segmentation algorithm called C3S using the edge maps produced by C3E.

Finally, chapter 10 concludes this documentation, enumerating the different conclusions which have
been drawn during the realization of this thesis. Future lines of research are also proposed and discussed.

Preliminary and final versions of the different contributions of this thesis have been published in the
form of technical reports [199,200,202,203,208,209,215] and conference papers peer-reviewed [201,204–
207, 210–214]. Furthermore, [207] was considered as the 2nd best paper of the conference and granted
with a mention of honor.
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The Image Formation Process

Generally speaking, the digital values provided by a camera are the result of several scene factors which
interact with each other: the illumination distribution, the reflection properties of scene objects, the
objects geometry, the propagation medium and the performance of the imaging sensor. Throughout the
years, a lot of knowledge has been gained about the interaction of light with matter, with a great deal
of help from the computer graphics community in their attempts to produce every time more and more
realistic images [83]. Unfortunately, selecting appropriate image formation models for machine vision
can be quite difficult. If one desires the most accurate available model, then light-matter interaction
can be described in terms of the interaction of photons with atoms or molecules. It would, however,
be a formidable task to derive computer vision algorithms from a physical model at such a low level.
To avoid this situation, several models of reflection and light propagation manageable enough so as to
be effectively incorporated in machine vision algorithms at the cost of some loss of physical accuracy
have been developed. A sophistication of this extent has allowed, in particular, to handle images
more complex than those which have been modeled through statistical techniques for many years. The
implementation of tasks such as highlight identification and extraction, material classification or colour
constancy has become feasible as well.

This chapter is devoted to introducing the main aspects of the physical processes involved in the
formation of images in real cameras, together with the models generally accepted by the physics-
based vision research community. First of all, section 2.1 provides a brief introduction to radiometrical
concepts. Next, light-matter interaction and physics-based reflection models are the object of study of
sections 2.2 and 2.3. Finally, optical imaging sensors and their models of operation are described in
section 2.4. Other factors involved in the formation of the image, such as refraction processes leading
to transparency, the influence of the propagation medium or the interaction of light with light-emitting
surfaces, by either means fluorescence, incandescence or fosforescence, are not covered by this work and
are not included in the following. In particular, [83] unveils part of the physics underlying transparent
materials and emissivity of surfaces, while the attenuation of light as it travels through the propagation
medium has been covered by several studies and surveys, such as [157,185,243], concerning atmospheric
phenomena, or [181,198,221], for the case of underwater environments.

2.1 Radiometry

2.1.1 Radiometrical concepts

The most comprehensive and least controversial vocabulary about radiometry is the one proposed by
the Commission Internationale de l’Eclairage (CIE) [31], although very good descriptions of radiometric
terms can be found in several papers and books [104, 145, 184]. In the following, a brief summary of
terms is included:

1. Solid angle: The solid angle ω of a cone of directions is defined as the area cut by the cone on the
unit sphere. In the case of a sphere with radius r:
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Fig. 2.1. Radiometrical terms and notation: (a) solid angle subtended by a patch of area A at a distance r
from the origin and surface normal n; (b) symbols for flux-related radiometrical terms.

ω =
Asphere

r2
(steradians) . (2.1)

A small planar patch of area A at distance r from the origin and surface normal n subtends a solid
angle Ω such as:

Ω =
A′

r2
=

A cos θ

r2
= ω cos θ , (2.2)

where θ is the angle between the surface normal n and a line connecting the patch to the origin
(see figure 2.1(a)). That is to say, A′ is the surface A as seen from the origin. This effect is known
as the foreshortening of surface A.

2. Radiant Flux (Φ): Power emitted, propagated or received as optical electromagnetic radiation (W ).
3. Radiant Intensity(I): The radiant intensity of a source is the exitant flux per unit solid angle

(W · sr−1); that is to say, the outgoing flux in a given direction:

I =
dΦr

dωr
. (2.3)

The total flux emitted by a source is the integral of radiant intensity over the full sphere of possible
directions (4π sr).

4. Irradiance(E): Amount of light falling on a surface. It is the flux per unit area (W ·m−2) incident
on the surface. That is, the incident flux density:

E =
dΦi

dA
. (2.4)

5. Radiant Exitance(M): It is the exitant flux density, measured in W · m−2:

M =
dΦr

dA
. (2.5)

6. Radiance(L): Amount of light radiated from a surface in a given direction. It is the power per unit
area per unit solid angle (W · m−2 · sr−1) emitted from the surface. The term solid angle appears
because a surface can radiate energy in a hemisphere of directions, and different amounts of energy
in different directions:

L =
d2Φr

(dA cos θr)dωr
. (2.6)

The unit area mentioned in the definition of radiance is the foreshortened area: the surface area
multiplied by the cosine of the angle between a perpendicular to the surface and the specified
direction. Hence, radiance can be equivalently defined as the flux emitted per unit surface area per
unit projected solid angle.
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Fig. 2.2. Angles notation for the bidirectional reflectance distribution function (BRDF).

Visible light is normally a mixture of energy at many wavelengths and is characterized by a spectral
power distribution (SPD) to indicate how much energy is present at each wavelength. Many times
the SPD is given relative to the highest value and is called a relative SPD . Due to this wavelength
dependence, many times it is necessary to specify the aforementioned radiometric quantities and other
magnitudes as a function of wavelength. In such cases, the adjective spectral is added in front of the
term, and its units become per unit wavelength interval (nanometer). For instance, spectral radiance
is L(λ) = d3Φ/(dωdλdA cos θ).

2.1.2 The Bidirectional Reflectance Distribution Function

The Bidirectional Reflectance Distribution Function (BRDF) f(θi, φi; θr, φr) relates the radiance exi-
tant from a surface in a given direction (θr, φr) with light irradiance falling on it from another (θi, φi),
being θ the so-called polar angle and φ the azimuth angle1. This function was originally introduced
by Nicodemus et al. [184] as a unified notation for the specification of reflectance in terms of both
incident- and reflected-beam geometry:

f(θi, φi; θr, φr) =
dL(θr, φr)

dE(θi, φi)
. (2.7)

For many surfaces, the radiance is not altered if the surface is rotated about the surface normal.
In this case, the BRDF depends only on the difference φr −φi. This is certainly true of matte surfaces
and specularly reflecting surfaces. It is not true of surfaces as for example the mineral called tiger’s
eye or the iridiscent feathers of some birds (these all have a distinct directionality in their surface
microstructure).

In any case, the exact form of a BRDF depends on the surface material. It can be determined
experimentally by illuminating a flat sample of the material of interest with a lamp mounted on a
goniometer and measuring its irradiance using a sensor mounted on another goniometer. Another way
to obtain the BRDF is to model how light is reflected from a surface and to find the corresponding
reflectance properties analytically or by numerical simulation. Some studies have been published about
this subject, like e.g. [34].

The original definition of the BRDF given above can be extended to include the light wavelength
as a variable. The resulting function is called the bidirectional spectral-reflectance distribution function
(BSRDF) which is defined as:

f(θi, φi; θr, φr;λ) =
dL(θr, φr;λ)

dE(θi, φi;λ)
. (2.8)

2.2 Interaction of Light with Matter

2.2.1 Introductory concepts

When a ray of light strikes the surface of an object it may be absorbed, transmitted or reflected
depending on its optical properties. These optical properties can be related to the electromagnetic

1 The polar and the azimuth angles are also known as, respectively, the slant and the tilt angles.



12 The Image Formation Process

quantities ǫ (electrical permitivity, C2/(N ·m2)), µ (magnetic permeability, N · s2/C2) and σ (conduc-
tivity, (Ω · m)−1) and are summarized by the complex index of refraction M = n − K0i, n,K0 ∈ R.
The dimensionless quantity n is called the refractive part of M . In a nonattenuating medium (i.e. the
amplitude of an electromagnetic wave does not decrease as the wave propagates in the material), n is
the ratio of the speed of light in vacuum to the speed of light in the material (n = c/vmaterial) and
K0 = 0.

For absorbing media, K0 takes values above 0 and the interpretation of n is more complicated.
Because of this, K0 is called the absorptive part of M . By way of example, in case the absorption
is homogeneous, a plane wave of angular frequency ω traveling in the x direction that encounters an
interface at x = 0 suffers an exponential attenuation which can be written as:

E(x) = E(0)e
−2ωK0x

c , (2.9)

where E(x) represents the irradiance at a depth x in the material. The distance x = c/(2ωK0) is often
called the skin depth of the material.

It is possible to solve for n and K0 in terms of the fundamental electromagnetic properties of the
material (ǫ, µ, σ) by requiring that the incident light wave satisfy Maxwell’s equations. The resulting
expressions for n and K0 are given by:

n2(λ) =
µǫc2

2


1 +

[
1 +

(
λσ

2πcǫ

)2
]1/2


 , (2.10a)

K2
0 (λ) =

µǫc2

2


−1 +

[
1 +

(
λσ

2πcǫ

)2
]1/2


 . (2.10b)

It is important to note that, for a given material, ǫ and σ depend on wavelength, λ.
Further, it is common to divide materials into two classes on the basis of their optical proper-

ties [252]:

1. optically homogeneous materials, which exhibit a constant index of refraction throughout the ma-
terial, and include metal, glass and crystals as the most common examples; and

2. optically inhomogeneous materials, which, on the other hand, consist of a substrate with many
embedded colorant particles that differ optically from the substrate, and comprise plastics, paper,
textiles and paints among many others.

It is also usual to distinguish between metals and dielectrics because of their different behaviour
with regard to light reflection. The most prominent difference between metals and other materials is
the large number of electrons that are free to move throughout a metal, causing them to have large
values of conductivity σ. By contrast, electric charges are not free to move in dielectrics, and thus
these materials result to be poor conductors. Another important property of metals is that they are
optically homogeneous, while there exists homogenous and inhomogeneous dielectrics.

Real reflection tends to be more complex than described in the rest of this section. However, the
given explanations are very useful approximations [252] (see figure 2.3 for a graphical description). In
the following, the terms interface and body reflection will be used with preference against the more
popular terms specular and diffuse reflection, because the latter are used for different concepts in
different fields.

2.2.2 Interaction of light with metals

The optical properties of a metal are largely determined by how light interacts with its electrons. The
various possible interactions can be divided into two classes.

In the first class of interaction, light is scattered by free conduction electrons. This class of in-
teraction turns out to be the most common in metals because of the large number of free electrons.
These free electrons scatter light efficaciously, causing metals to have a small skin depth and large
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Fig. 2.3. Body reflection versus interface reflection over a dielectric.

reflectance values. Since these free electrons have no natural frequencies, they scatter light of all wave-
lengths equally well. This is why most metals have spectral reflectance functions that do not vary with
wavelength in the visible range and thus appear silver or gray in color.

In addition to being scattered by free electrons, light can also be absorbed during interactions with
electrons that are confined to exist in certain energy zones (Brillouin zones). Each zone is separated
from adjacent zones by a gap of disallowed energies. For a certain range of incident light wavelengths,
the energy of the incident light can match the energy gap between zones. In this situation, an atom
can absorb the light, allowing an electron to jump to a higher energy zone. This absorbed energy is
typically converted into heat and, thus, does not appear in the reflected wave. The important point is
that there is a critical wavelength λ0 such that incident light energy is not absorbed for λ > λ0.

For most metals, there is no absorption of light in the visible wavelength range. The most notable
exceptions to this rule are copper and gold. The spectral reflectance functions for both copper and
gold are near 1 for long visible wavelengths (towards red) and decrease sharply below their critical
wavelengths λ0. Copper and gold absorb blue and green light strongly while reflecting red light. This
gives these metals their reddish colors. On the contrary, silver begins absorbing in the ultraviolet at
approximately λ0 = 310 nm [88].

2.2.3 Interaction of light with dielectrics

Dielectrics differ significantly from metals in that they are poor conductors of electricity. Physically this
is because all Brillouin zones that contain electrons are full and there exist large energy gaps separating
these full zones from adjacent empty zones. Hence, an applied electric field does not produce a current,
and the material behaves as an insulator. An important consequence of having a small conductivity
is that K0 is small and incident light is able to penetrate a significant distance into the body of the
dielectric material. In some cases, a fraction of the incident light that penetrates reaches the other end
of the material, producing transparency; in other cases, all the light is absorbed or scattered inside the
material, producing opacity.

In general, when light strikes a surface, it must first pass through the interface between the air and
the surface medium. Because the medium refraction index differs from that of the air, some of the light
is reflected at the interface producing interface reflection. In general, such reflection is assumed to be
in the “perfect specular direction” relative to the local surface normal. Most materials are, however,
“optically rough”, with local surface normals that differ from the macroscopic surface normal, so that
the interface reflection is somewhat scattered at the macroscopic level, giving rise to a high brightness
peak rather than an ideal impulse.

The amount of light reflected at the interface is governed by Fresnel’s laws, which relate interface
reflectance to the angle of incidence (relative to the local surface normal), the index of refraction of
the material, and the polarization of the incoming illumination. The interface reflectance is a function
of wavelength since the index of refraction generally depends on it, although the amount of reflection
is typically constant to within a few percent across the visible spectrum; acrylic plastic, for example,
has an index of refraction of 1.485 at 400 nm and 1.505 at 700 nm [113]. Hence, interface reflection is
frequently assumed to be constant with respect to wavelength, and is thus said to have the same color
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as the illuminant. By contrast, the effect of polarization is more severe, and interface reflection tends
to be highly polarized, especially for large angles of incidence.

The light that penetrates through the interface passes through the medium, where it undergoes
scattering from the colorant (internal scattering), and eventually is either transmitted through the
material (if it is not opaque), absorbed by the colorant, or re-emitted through the same interface
by which it entered, producing body reflection. The geometric distribution of this body reflection is
sometimes assumed to be isotropic (i.e. independent of the viewing direction). The colour of the body
reflection is generally different from that of the illumination, since interactions with colorant particles
result in absorption with a probability dependent on wavelength. Body reflection is usually considered
to be unpolarized.

2.3 Reflection Models

While the Lambertian model is accepted as a sufficient approximation of body reflection most times,
the complexity of the interface reflection has given rise to the development of several models, differing
among them in the physical approach followed or in the assumptions about the surface geometry at
the microscopic level. In the following sections, mathematical models for both cases of reflection are
revised, first in isolation and, next, as a part of general models of light-matter interaction.

2.3.1 The Reflectance Map

The apparent brightness of a surface patch depends on the orientation of the patch relative to the
viewer and the light sources. Different surface elements of a non-planar object reflect different amounts
of light toward an observer as a consequence of their differing attitude in space. A smooth opaque
object gives rise to a shaded image, one in which brightness varies spatially, even though the object is
evenly illuminated and covered by a uniform surface layer.

A convenient representation for this spatial variation is the so-called reflectance map, R(p, q), a
concept introduced by Horn in [101] which models scene radiance as a function of the surface nor-
mal N = (p, q,−1). In this representation, the normal to a surface z(x, y) is calculated through the
cross-product of the tangents at (x, y) on the X and Y directions: (∆x, 0, Zx∆x) ≡ (1, 0, Zx) and
(0,∆y, Zy∆y) ≡ (0, 1, Zy), respectively. Then, (1, 0, Zx) × (0, 1, Zy) = (p = Zx, q = Zy,−1) is the
surface normal at (x, y, z). The P − Q plane is called the gradient space.

Usually, the reflectance map is depicted as a series of contours of constant scene radiance, as
indicated in figure 2.4. In the figure, the left map corresponds to a surface showing only body reflection,
while the right map corresponds to a surface showing both body and surface reflection. In the right
map, two peaks can be appreciated, corresponding to the surface orientations that maximize each of
the two different types of reflection.

There are different ways to measure the reflectance map: by using a goniometer, from the image
of an object of known shape, or it may be calculated if properties of the surface material and the
distribution of light sources are given.

2.3.2 Body reflection models

Lambert was the first to investigate the mechanism underlying diffuse reflection [137]. A surface obey-
ing Lambert’s law, an ideal Lambertian surface, appears equally bright from all viewing directions,
regardless of how it is irradiated, and reflects all incident light, absorbing none. From this definition,
several facts can be deduced: (1) the reflected radiance is isotropic, that is, L is constant, with the
same value for all directions (θr, φr); (2) the integral of reflected radiance over the hemisphere above
the surface, i.e. the radiant exitance M , must equal the total irradiance E falling over the surface,
since no light is absorbed; and (3) the BRDF f(θi, φi; θr, φr) must be a constant for such a surface.
The following reproduces the derivation of the reflection model for an ideal Lambertian surface by
Horn [102].
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On the one hand, the radiant exitance M can be found by integration:

M =

∫

Ωr

LdΩr , (2.11)

where Ω denotes projected solid angle. Since dΩr = cos θrdωr:

M =

∫

ωr

L cos θrdωr , (2.12)

Now, from figure 2.5, dωr = A/R2 = l1 · l2/R2 = (rdθr)(Rdφr)/R2 = (R sin θrdθr)(Rdφr) /R2 =
sin θrdθrdφr. Hence:

M =

∫ π

−π

∫ π/2

0

L cos θr sin θrdθrdφr = Lπ . (2.13)

From equation 2.13, f is given as:

f(θi, φi; θr, φr) =
L

E
=

L

M
=

1

π
. (2.14)

In this way, if a Lambertian surface is irradiated from different directions (θi, φi) the resultant
radiance Lr is given by:

Lr =

∫

ωi

fdE(θi, φi) =
1

π

∫

ωi

L(θi, φi) cos θidωi , (2.15)

where cos θi accounts for the foreshortening of the surface. Here, the whole set of values of L defines
what is usually referred to as an extended light source. Equation 2.15 is a general form of Lambert’s
Cosine Law .



16 The Image Formation Process

If, instead of an extended light source, the scene illumination reduces to a point light source at
infinity, the whole scene can be assumed to be uniformly irradiated from just one direction, say (θ, φ),
with radiance Ld. In such a case, from equation 2.15:

Lr =
1

π
Ld cos θ . (2.16)

Equation 2.16 is a more popular form of the Lambert’s law which is used in most of the physics-based
vision methods including diffuse reflection in their image formation models.

If, in this latter case, vectors N and S are used for representing, respectively, local surface normal
and direction (θ, φ):

Lr =
1

π
Ld

N · S
‖N‖ · ‖S‖ . (2.17)

The term N ·S
‖N‖·‖S‖ represents the dependence of scene radiance on surface orientation. As mentioned

above, a usual notation for N is (p = Zx, q = Zy,−1), where Z is the surface. Similarly, S = (ps, qs,−1)
is another representation for direction (θ, φ). Then:

R(p, q) =
N · S

‖N‖ · ‖S‖ =
pps + qqs + 1√

p2 + q2 + 1
√

p2
s + q2

s + 1
. (2.18)

This function R(p, q) is the aforementioned reflectance map and, as can be seen, makes explicit the
relationship between surface orientation and brightness. It can be easily shown that the maximum of
R(p, q) in this case is at (p = ps, q = qs); that is, when the surface normal aims at the light source.
The minimum (R(p, q) = 0) is attained when (p, q,−1) ⊥ (ps, qs,−1); that is, when the surface normal
lies perpendicular to the light source.

Real matte surfaces rarely behave as perfect diffusers in the sense that part of the incident light
is absorbed and does not emerge through the interface by which it entered. In those cases, Lambert’s
law is complemented with an additional factor called the body reflectance or diffuse albedo, ρ ∈ [0, 1],
representing the amount of incident light which is not re-emitted. The incorporation of ρ to the original
Lambert’s law, together with the dependence of the different terms on wavelength λ can be found in
equation 2.19:

Lr(λ) = cos θLd(λ)ρ(λ) . (2.19)

Here, ρ has absorbed the term 1/π. In this way, if two matte objects of the same shape and illuminated
by the same light source appear one brighter than the other, it is because the darker possesses a lower
diffuse albedo. The diffuse albedo becomes, thus, a property of the surface material.

Unfortunately, even for objects exhibiting an apparently matte surface finish, certain limitations
exist for using the Lambertian model. In particular, for some surfaces, the diffuse reflection is not
independent of the viewer direction (i.e. sand, rough plaster or rough sandpaper). Several improvements
have been suggested to overcome these limitations (see [295] for a concise overview). Among all of them,
two models have been separately developed recently. The diffuse reflection model proposed by Oren
and Nayar [197] applies to rough surfaces whose local geometry is modeled as micro-facets distributed
over various orientations and arranged in V-grooves. Assuming the diffuse reflection of each micro-
facet to be Lambertian, the model consists of the combined reflection of these micro-facets subject to
masking, shadowing and inter-reflection effects. An important consequence of the work of Oren and
Nayar is that for very rough surfaces, the dominant factors that determine radiance are the geometrical
effects caused by surface roughness and not the precise local diffuse reflectance characteristics. However,
when the surface is relatively smooth, the geometrical effects turn out to be negligible and the exact
model of local diffuse reflectance plays a critical role. This problem of accurately modeling local diffuse
reflection from smooth surfaces is addressed by Wolff in [294]. His model consists in the combination of
an isotropical sub-surface light scattering distribution produced from internal inhomogeneities coupled
with the refraction of externally incident and internally scattered light at the air-surface dielectric
boundary.

In a common paper [295], Wolff, Nayar and Oren, apart from suggesting a unification of both models
in order to accurately explain diffuse reflection with intermediate roughness, detail important deviations
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from Lambertian behaviour in matte rough and smooth surfaces. Unfortunately, both models imply the
introduction of additional parameters which are difficult to estimate for objects of unknown geometry.
Because of this, they are seldom adopted into machine vision algorithms. The Lambertian model,
however, can be found almost within every physics-based vision algorithm because of its simplicity.
The knowledge of what physical conditions allow applying it to good approximation plays, thus, a
central role. In this sense, the authors determine that it is accurate within a margin of about 5% when
θr and θi are simultaneously less than 50◦.2

2.3.3 Interface reflection models

The other extreme of material reflectance properties is illustrated by an ideal specular reflector , which
reflects all of the light arriving from direction (θi, φi) into direction (θi, φi + π). From the definition of
the BRDF:

L(θr, φr) =

∫

ωi

fdE(θi, φi) =

∫

ωi

fL(θi, φi) cos θidωi

=

∫ π

−π

∫ π/2

0

fL(θi, φi) cos θi sin θidθidφi . (2.20)

Now, since L(θr, φr) = L(θr, φr + π), f can be deduced to be as follows:

f =
δ(θi − θr)δ(φi − φr − π)

sin θi cos θi
. (2.21)

This model assumes that the highlight is only a single point, but this is a highly idealized behaviour
of specular reflection which only holds for a highly polished surface, such as a perfect mirror. In general,
it is recognized that specular reflection consists of two components: the specular spike and the specular
lobe. The specular spike is zero in all directions except for a very narrow range around the direction of
macroscopic specular reflection. The specular lobe spreads around the direction of specular reflection
and is caused by the roughness of the surface, which makes the microscopic specular direction differ
from point to point. With the aim of capturing this complex behaviour as accurately as possible into
one mathematical formulation, several models more or less based on the underlying optics principles
have been developed. Two different ways have been followed so far for describing this type of reflection
using a sound physical basis: physical or wave optics, which makes use of electromagnetic theory and
Maxwell equations; and geometrical optics, characterized by the basic assumption of incoming light
whose wavelength is small compared with the roughness of the material, which greatly simplifies the
derivation and final formulation of the models, but also reduces its scope of application. Two general
representatives of these approaches which fit experimental data well are the Beckmann-Spizzichino
model [13], for physical optics, and the Torrance-Sparrow model [281], for geometrical optics. Simpli-
fications of both reflection models are used in computer vision and computer graphics to describe the
specular component.

On the one hand, the model by Torrance and Sparrow only describes the lobe component and
assumes that a surface is composed of randomly oriented mirror-like micro-facets, each one comprising
one side of a symmetric V-groove cavity, whose size is considered much larger than the wavelength of
incident light. Only those micro-facets whose normal is half-way between the incident and the reflected
beams contribute to the surface reflectance. Besides, the model incorporates the masking effect (i.e.
adjacent facets obstruct flux incident upon a given facet) and the shadowing effect (i.e. adjacent facets
obstruct the flux reflected by a given facet).

On the other hand, the Beckmann-Spizzichino model describes the reflection of plane electromag-
netic waves from smooth and rough surfaces using basic concepts of electromagnetic wave theory. The
model, which consists of the aforementioned specular spike and lobe components, results in a fairly

2 None of the algorithms proposed in this thesis make use of the models by Oren/Nayar and Wolff in an
explicit way. In this sense, it is considered that including their derivation and formulation is out of the scope
of this section.
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complicated function for surface radiance involving the angles of incidence and reflection and the sur-
face roughness parameters. Among the different assumptions of the model, it is noteworthy the fact
that masking and shadowing of surface points by adjacent points are not included in the formulation.

The Torrance-Sparrow model provides a good approximation of the specular lobe component of
the Beckmann-Spizzichino model, although it is not capable of describing the mirror-like behaviour of
smooth surfaces and, hence, should not be used to represent specular spikes. However, in view of its
simple mathematical form and taking into account that both components are simultaneously significant
for only a small range of roughness levels, the Torrance-Sparrow model results to be a good choice
in most cases [180]. In this sense, by way of illustration, a modified version of the original model by
Healey [88] for the case of a distant light source incident from direction (θi, φi) with radiance Ld is
given in equation 2.22:

Lr(λ) = Ld(λ)
F (γ, λ)P (α)G(θi, θr, α, β)

cos θr
, (2.22)

where:

• α is the angle between the unit surface normal n and the unit angular bisector h of (θi, φi) and
(θr, φr) (h = (v + s)/‖v + s‖, s and v are, respectively, the unit vectors corresponding to (θi, φi)
and (θr, φr));

• β is the angle between direction (θr, φr) and h;
• γ is the angle between direction (θi, φi) and h;
• F (γ, λ) is the Fresnel term, representing the reflectance of a smooth surface, given by:

F (γ, λ) = 0.5(R⊥ + R‖) , (2.23)

where:

R⊥ =
a2 + b2 − 2a cos γ + cos2 γ

a2 + b2 + 2a cos γ + cos2 γ
, (2.23a)

R‖ =
a2 + b2 − 2a cos γ tan γ + sin2 γ tan2 γ

a2 + b2 + 2a cos γ tan γ + sin2 γ tan2 γ
(2.23b)

and

a =

√√
c2 + d2 + c

2
b =

√√
c2 + d2 − c

2
(2.23c)

c = n2(λ) − K2
0 (λ) − sin2 γ d = 2n(λ)K0(λ) (2.23d)

if unpolarized light is incident at an angle γ (R⊥ is the component polarized perpendicular to the
plane of incidence, while R‖ is the component polarized parallel to the plane of incidence, the plane
of incidence is the one containing the surface normal and the incident beam, and (n − K0i)(λ) is
the complex index of refraction);

• P is a probability distribution function for the orientation of micro-facet normals, which accounts
for the number of micro-facets effectively contributing to the reflected light and is given by:

P (α) =
1

m2 cos4 α
e−

tan2 α

m2 , (2.24)

where m is the surface roughness parameter, defined to be the root-mean-square slope of micro-facet
normals;

• G is a geometrical attenuation factor that incorporates the shadowing and masking of surface
micro-facets by adjacent facets:

G(θi, θr, α, β) = min

(
1,

2 cos α cos θr

cos β
,
2 cos α cos θi

cos β

)
. (2.25)
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In this model, the Fresnel term is analogous to ρ in equation 2.19; that is to say, it expresses the
amount of incident light which is not absorbed by the surface, although it is referred to the ideal case
of smooth surfaces.

A further simplification of the Torrance-Sparrow model can be obtained taking into account that
for most surfaces the Fresnel term is almost 1 [280] and that the effect of masking and shadowing is
almost negligible most times, so that factors F and G are removed from equation 2.22 to obtain a
simpler model for specularities [92].

To finish this section, it is worth mentioning the specular part of the Phong model, which became
quite popular in the computer graphics research community because of its simplicity and surprisingly
remarkable realism [228]. This model predicts specularities which extend beyond an only point by
means of an exponential expression involving the angle between the perfect specular direction and the
viewing direction, ϕ:

Lr(λ) = Ld(λ) cosm ϕ , (2.26)

where m determines the roughness of the surface, so that the larger m, the smoother the surface.
Despite its popularity, this model is founded on its aesthetic results rather than on a sound physical
basis.

2.3.4 Hybrid models

Real surfaces rarely are purely Lambertian or purely specular. They rather reflect light as a combina-
tion of both body and interface reflection by means of an additive composition. One straightforward
equation for representing the final radiance is the following:

L(p;λ) = Kb(p)Lb(p;λ) + Ki(p)Li(p;λ) , (2.27)

where p is a scene point, Lb and Li are, respectively, the body and interface reflection components, and
Kb and Ki are parameters of the surface material which determine the relevance of the corresponding
component in the final radiance. Using this general structure for final radiance, several models have
been proposed particularizing mainly on the expressions for Lb and Li (see [180,228,281] among others).

Nevertheless, the by far most referenced and used hybrid reflection model is the Dichromatic Reflec-
tion Model (DRM) introduced by Shafer [252]. The DRM was originally conceived for inhomogeneous
dielectric materials and matches the structure of equation 2.27. In fact, the original formulation of the
DRM does not specify the diffuse and the specular reflection components explicitly, and most of the
work done with it neither makes them explicit. The DRM may be summarized by equation 2.28 3:

L(p;λ) =

Lb(p;λ)︷ ︸︸ ︷
mb(p) [Ld(λ)ρb(p;λ)] +

Li(p;λ)︷ ︸︸ ︷
mi(p) [Ld(λ)ρi(p;λ)] . (2.28)

With a reasonable degree of accuracy, each component Lj (j ∈ {b, i}) can be modeled as the product
of two terms: Cj(p;λ) = Ld(λ)ρj(p;λ), dependent only on wavelength and not on local geometry, and
expressing the fraction of the incoming (directional) light Ld(λ) which is conveyed by that reflection
component due to the material reflectance 0 ≤ ρj(p;λ) ≤ 1; and mj(p), which is a geometrical factor
depending on the surface geometry at point p, and independent of wavelength. According to the author,
the separation of the interface reflection component into a geometrical and a spectral term has an effect
no greater than 2% in pixel-value errors, and this value is attained only if the angle of incidence of the
light is larger than 60◦ and the viewing angle is nearly the perfect specular direction. As for the body
reflection component, only if Ld(p;λ)ρi(p;λ) is not constant there is an interdependence between the
geometry and the spectral factors; since it generally does not vary much with wavelength, the effect of
this interdependence should be negligible.

3 Sometimes position p in equation 2.28 is replaced by another variable θ = (i, e, g) referring to the so-called
photometric angles: i, the angle between the surface normal and the direction towards the light source or
incident direction, known as the angle of incidence; e, the angle between the surface normal and the direction
towards the viewer, known as the angle of exitance; and g, the angle between the incident direction and the
viewer direction, known as the phase angle.
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Fig. 2.6. The dichromatic reflection model in RGB colour space.

This model predicts that the pixels corresponding to the same uniformly colored surface will lie
on a hyperparallelogram in color space. In effect, because the geometry is different at each point,
the geometrical factors mi and mb vary from point to point. However, vectors Ci and Cb, resultant
from the discretization of wavelength in a set of colour bands, are the same at all points for the
same surface material, because they do not vary with geometry. In other words, the pixel values are
a linear combination of Ci and Cb with the coefficients determined by mi and mb at each point (see
figure 2.6(left)).

In a subsequent paper [88], Healey shows that:

a) using the Reichman body-scattering model4, the DRM is a reasonable approximation for a large
class of inhomogeneous dielectrics; and

b) from the Torrance-Sparrow surface-reflection model and the Fresnel equations, a simple model of
the form

L(p;λ) =

Li(p;λ)︷ ︸︸ ︷
mi(p) [Ld(λ)ρi(p;λ)] (2.29)

is an accurate color reflection model for metals under a single spectral composition of illumination.
This model is called the Unichromatic Reflection Model for metals (URM). In this case, since
only one spectral component is present in the model, pixels corresponding to the same uniformly
coloured metal lie in a straight line (in figure 2.6(left), this line would correspond to the one
containing vector Ci).

With both models, Healey develops the Approximate Color Reflectance Model (ACRM):

L(p;λ) =

{
mi(p)Ci(p;λ) metal

mi(p)Ci(p;λ) + mb(p)Cb(p;λ) inhomogeneous dielectric
(2.30)

In a contemporary paper, Tominaga and Wandell [280] test the DRM under the additional assump-
tion that the interface component of the reflectance ρi(λ) is a constant. This assumption is derived
from the fact that, obtaining ρi(λ) from Fresnel’s law and considering that the refractive index at the
surface is constant over the visible spectrum, ρi(λ) must be independent of wavelength, and thus a
constant, under these circumstances. Lee et al. [145] further investigate the constancy of ρi(λ) and
coin the term Neutral Interface Reflection model (NIR) for this particularization of the DRM. The
measurements presented in this paper show that ρi(λ) is nearly constant for certain kinds of plastics,
leaves, painted surfaces and fruits. Experiments also show, however, that ρi(λ) is not approximately
constant for other inhomogeneous materials such as coloured paper and some ceramics.

Finally, the DRM as presented above depends on the assumption that the illumination at any point
comes from a single light source. A further improvement over the model can be made by incorporating
an ambient lighting term La(p;λ) = La(λ)ρa(p;λ), representing light coming from all directions in
equal amounts, La(λ), which increases the irradiance at scene surfaces independently of local surface

4 The Reichman body-scattering model [235] is an extension of the previous Kubelka-Munk theory, that is
a general mathematical treatment of scattering and absorption in colorant layers. The extension mainly
consists of removing certain non-realistic assumptions. Experiments have shown that Reichman’s model
accurately predicts the reflecting properties of real materials.
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geometry [252]. As for ρa, it is generally represented as a linear combination of the body and interface
reflectances [58,252]. After adding the ambient term, the DRM turns out to be:

L(p;λ) =

La(p;λ)︷ ︸︸ ︷
La(λ)ρa(p;λ) +

Lb(p;λ)︷ ︸︸ ︷
mb(p) [Ld(λ)ρb(p;λ)] +

Li(p;λ)︷ ︸︸ ︷
mi(p) [Ld(λ)ρi(p;λ)] . (2.31)

This model is a better approximation of daylight, that contains directional light from a point source (Ld

terms), the sun, and ambient light from the sky (La term), and of light in a room, which comes from
(directional) light fixtures (Ld terms) and from inter-reflections on walls and other objects (La term).
Since La(p;λ) does not vary with geometry, the effect of this change is to translate the hyperparallel-
ogram of pixel values from a single surface away from the origin by vector Ca (see figure 2.6(right)).
It is interesting to note that a point whose colour lies exactly at C = Ca has mi = mb = 0, and might
therefore be suspected of lying within a shadow.

2.3.5 Inter-reflections

In the previous sections, the image formation process has reduced to the case where scene surfaces
received light from some identifiable light sources. This model is, however, inaccurate. Actually, each
surface also receives light that is reflected by other objects in the scene. This phenomenon is known as
inter-reflection and should be recognized and accounted for if a very accurate analysis of the image is
needed.

The extension of the DRM to include ambient lighting is in fact a form of taking into account
inter-reflections into closed spaces such as a room. In that case, it is assumed that the repeated light
reflections within the enclosed space give rise to a constant light level of less power than the light sources
illuminating the scene. Such new “illuminant” would be characterized by its own SPD resultant from
the combination of the multiple reflections on the objects and walls of the scene.

In a more detailed analysis, inter-reflections can be modeled by extension of the DRM [253]. If light
bounces from surface A to surface B, then the illumination on B is determined by the direct lighting
and the light produced by both the body reflection and the interface reflection coming from A. These
three colours all illuminate B, so the reflected light from B has six components:

1. light from the light source directly to B, reflected as interface reflection from B;
2. light from the light source directly to B, reflected as body reflection from B;
3. light from the light source to A, reflected as interface reflection from A onto B, then reflected as

interface reflection from B;
4. light from the light source to A, reflected as body reflection from A onto B, then reflected as

interface reflection from B;
5. light from the light source to A, reflected as interface reflection from A onto B, then reflected as

body reflection from B; and
6. light from the light source to A, reflected as body reflection from A onto B, then reflected as body

reflection from B.

The first two components are the components of the DRM for surface B, while the last four correspond
to the inter-reflections. If interface reflection is assumed to have the same colour as the illuminant, the
six previous components can be reduced to four colours.

The previous analysis just considers two mutually reflecting surfaces at a time. Dealing with inter-
reflections in the general case can clearly be a formidable task. It is because of this that inter-reflections
are ignored if their effects are not as relevant so as to prevent machine vision algorithms from obtaining
accurate enough results without taking them into account5. Otherwise, one can try to remove them
from the image. For instance, Funt et al. propose a method capable of producing inter-reflection-
free images in [56], restricting the domain to one-bounce inter-reflections between two matte, convex
surfaces of uniform colour.

5 Besides, the effect of mutual illumination can be greatly reduced if the scene is illuminated by a direct light
source of enough radiance [56].
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(a) (b)

Fig. 2.7. Examples of filter transmittance and spectral responsivity curves: (a) filter transmittance for the
red, green and blue channels for the SONY ICX075AK CCD image sensor [258]; (b) spectral responsivity of a
typical CCD chip (solid line) and infrared cut filter (dotted line) [274].

2.4 Optical Image Sensors

The operation of image sensors at the radiometric level is reviewed in this section. On the one hand,
section 2.4.1 presents a simple camera model independent of the imaging technology and generally
accepted by the physics-based vision research community [119, 187]. Next, sections 2.4.2 and 2.4.3
overview the still leading imaging technology, Charge Coupled Devices (CCD), while section 2.4.4
reviews a specific model for the operation of CCD systems, based on a previous model by Healey and
Kondepudy [93], to provide a detailed image formation expression including the different sources of
noise affecting CCD’s performance. Finally, section 2.4.5 briefly surveys other aspects of the operation
of CDD cameras not included in the previous models.

2.4.1 General image sensing

The final pixel value given by a camera can be expressed as [187]:

Dc(i, j) = Qc
0

∫

Λ

E(i, j;λ)τ c(λ)s(λ)dλ , (2.32)

where: Dc(i, j) is the digital value of the c colour channel at image cell (i, j); Λ represents the set of
wavelengths in the visible spectrum (approximately between 380 (blue) and 760 (red) nanometers); Qc

0

is a scaling factor which accounts for several elements influencing the whole image, such as the exposure
time and the gain for the c colour channel; E(i, j;λ) is the incoming light at image cell (i, j); τ c(λ) is
the filter transmittance for the c colour channel, expressing the fraction of light that the corresponding
colour filter allows reaching the image cell at each wavelength (see figure 2.7(a) for an example); and
s(λ) is the spectral responsivity of the sensor, which represents the degree of sensitiveness of the sensor
to the different wavelengths (see figure 2.7(b) for an example). In a typical RGB camera, c ∈ {r, g, b},
while in a monochrome camera, τ(λ) = 1.

The term E(i, j;λ) in equation 2.32 represents the radiation coming from the set of scene points
which are optically reachable from image cell (i, j). From a theoretical point of view, the relation
between E(i, j;λ) and the radiance L(p;λ), originating at the scene points p optically reachable from
(i, j), involves the interaction of L with the propagation medium together with the effects of the camera
optics on the arriving light through its point-spread function and the lens collection capability [85].
Assuming a non-attenuating propagation medium and ignoring the blurring and low-pass filtering
effects of the point-spread function of the optics in a properly focused camera, the required relation
appears in a work by Horn and Sjoberg [104]. For the sake of completeness, their analysis is reproduced
in the following, removing co-ordinates i, j and p to simplify the notation when referring to E and L.
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Fig. 2.8. Light collected by the lens from the surface patch of area dS is projected into the image patch of
area dI.

Considering a small scene patch dS and the corresponding image patch dI (see figure 2.8), the
irradiance E falling over dI is given as the radiant flux dΦ coming from dS and passing through the
lens aperture per unit area, E = dΦ/dI. On the other hand, the radiance L at dS in a certain cone of
directions dΩ is the flux radiated by dS, dΦ, per unit area and projected solid angle, L = d2Φ/(dSdΩ).
Therefore, dΦ = dS

∫
Ω

LdΩ, where Ω is the projected solid angle subtended by the lens aperture.
Consequently:

E =
dS

∫
Ω

LdΩ

dI
. (2.33)

Now, if ϕ is the angle between the optical axis and the line connecting dI and the lens nodal point,
and f is the focal distance, then the solid angle ΩI subtended by dI is given by:

ΩI =
dI cos ϕ

(f/ cos ϕ)2
. (2.34)

If, on the other hand, ψ′ is the angle between the surface normal at the scene patch dS and the line
to the lens nodal point and z is the distance over the optical axis from the nodal point to dS, then the
solid angle ΩS subtended by dS as it is seen from the lens nodal point is given by:

ΩS =
dS cos ψ′

(z/ cos ϕ)2
. (2.35)

Since both solid angles are equal:

dI =
cos ψ′

cos ϕ

(
f

z

)2

dS , (2.36)

and, consequently:

E =

(
z

f

)2

cos ϕ

∫

Ω

L

cos ψ′ dΩ =

(
z

f

)2

cos ϕ

∫

ω

L
cos ψ

cos ψ′ dω . (2.37)

If the lens is small relative to the distance to the scene patch, ψ′ ≈ ψ,∀ψ. Furthermore, if the
radiance L is assumed constant over the set of directions ω, it can be removed from within the integral.
Finally, if the diameter of the lens aperture is d, the solid angle occupied by the lens aperture

∫
ω

dω
is approximately equal to the foreshortened area π(d/2)2 cos ϕ divided by the square of the distance
z/ cos ϕ. Therefore:

E =
(π

4

) (
d

f

)2

(cos ϕ)4L . (2.38)

The quantity f
d is the so-called F-number , by which optics aperture is configured in current cameras.

In particular, notice that the higher the F-number, the more attenuated the irradiance E with respect
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Fig. 2.9. CCD structure and operation: photons at different wavelengths λi strike the CCD cell and are
reflected (x), recombined (y), pass through the material (z), or are absorbed (e−) producing photoelectrons
which are confined into the potential well created thanks to the voltages applied to the gate structures on top
of the collection sites.

to scene radiance L. On the other hand, equation 2.38 reveals that the sensitivity of an imaging system
is constant for a particular image point, but a priori not uniform throughout the image.

To finish, if L(p;λ) is assumed constant for all the scene points p optically reachable from image
cell (i, j) and equal to L(i, j;λ), then, on the basis of equation 2.38:

E(i, j;λ) =
(π

4

) (
d

f

)2

(cos ϕ)4L(i, j;λ) . (2.39)

2.4.2 CCD basics

The Charge Coupled Device (CCD) was invented in the late 1960’s by researchers at Bell Labs and
experimentally verified in 1970 [5,21,109]. Although it was initially conceived as a new memory tech-
nology for computers, it soon became apparent that the CCD had many other potential applications,
including signal processing and imaging, the latter because of silicon’s light sensitivity for wavelengths
below 1.1 µm, which includes, in particular, the visible spectrum [39]. Their light sensitive properties
were quickly exploited for imaging applications and they produced a major revolution in Astronomy6.
On the other hand, their high resolution, high and wide spectral responsivity, low noise, non-linearities
below 0.1%, fast response, small size, low consumption and durability have made them the most promi-
nent device used in machine vision [93]. In addition, since a CCD is based on fixed sensing elements of
equal size, the device provides precise spatial quantization that enables accurate spatial representation
of images in a computer.

An analogy devised by Morley Blouke of Tektronix and Jerome Kristian of Mt. Wilson Observa-
tory [109] which is quite useful to understand the operation of a CCD compares it with a mechanism to
measure the spatial distribution of rainfall over a field. The mechanism consists of an array of buckets
which are placed over a grid of conveyor belts laid on the field, in such a way that, after a storm, the
buckets are transferred to a metering station where the amount of water in each bucket is measured.
In this way, each measurement represents the amount of rainfall at a particular location on the field.

In a CCD, light sensitive elements etched on a thin wafer of silicon play the role of buckets producing,
in this case, a measure of the spatial distribution of incident light. The measurement process relies

6 They improved the light gathering power of telescopes by almost two orders of magnitude. Nowadays an
amateur astronomer with a CCD camera and a 15 cm telescope can collect as much light as an astronomer
of the 1960s equipped with a photographic plate and a 1 m telescope [109].
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on the photoelectric effect by which the energy associated with photons striking the CCD reacts with
the silicon, exciting electrons from the valence band to the conduction band and producing electron-
hole pairs. The photon-generated electrons (photoelectrons) are then collected in one of many discrete
collection sites.

For every wavelength, the number of photoelectrons collected at each site is linearly dependent on
the number of photons per unit time and per unit area striking the silicon [40]. Although, generally
speaking, one can say every photon generates an electron-hole pair, there are deviations which degrade
the efficiency of the charge generation process such that incomplete conversions of photons into electrons
occur. This degradation is characterized by a figure of merit called quantum efficiency , η, usually
introduced in the equations of image formation in the form of a spectral responsivity, s(λ), to reflect
its wavelength dependence (see equation 2.32). It is defined as the number of electrons created per
incident photon at a given wavelength, and vary depending on the characteristics of the particular
material in which the collection sites are formed, through factors such as its absorption coefficient or
the recombination lifetime of photoelectrons, and also on the materials overlying the silicon7. In some
cases it can exceed 100% (i.e. more than one electron created per incident photon), although, for silicon-
based CCDs, the quantum efficiency is generally assumed to be limited to 100% at wavelengths above
∼400 nm. At wavelengths below this value (ultraviolet and deep blue bands), the photon energy is
sufficiently large to excite multiple electrons and bring them to the conduction band, so that special UV
coatings have to be deposited in order to avoid these electrons from contaminating the measurements.
As for wavelengths in the near infrared band, commercial CCDs do not show null quantum efficiency,
which leads to the incorporation of infrared cut filters in high-quality cameras (see figure 2.7(b)).

An electronic representation of the spatial distribution of the light incident on the CCD is finally
obtained by integrating photoelectrons in the individual collection sites over a fixed time interval
known as the integration or exposure time. During a process named charge coupling, charge packets
at collection sites are next transferred from site to site by manipulating gate potentials by means of a
number of charge transfer techniques which preserve the separation of individual charge packets8. The
fraction of charge which can be effectively transferred between adjacent collection sites is called the
charge transfer efficiency (CTE) of the device.

Taking as a basis the charge coupling process for moving charge packets between CCD cells, several
architectures to read the whole image out of the device have been devised so far. Full frame (FF) CCDs
have the simplest architecture and are the easiest to fabricate and operate (see figure 2.10). In this type
of CCD, the image is read out of the device by transferring in parallel the charge packets at every row
to the next row along vertical electron-conducting channels. Every one of these channels is connected
to a cell of an output serial shift register, so that, after each parallel row transfer, a complete new row
comes off the CCD and is stored into the register. From there, before the next parallel transfer, every
charge packet is brought to a charge-to-voltage output amplifier that generates a signal proportional
to the amount of charge9. The process continues until the entire two-dimensional array of collection
sites has been read out. Because the vertical parallel shift register is used for both scene imaging and
readout, a mechanical shutter must be used to preserve image integrity during the charge transfer
process, which reduces the frame rate achievable by the device. Other types of CCD, such as the

7 On the one hand, the absorption coefficient is related to how far into the material an incident photon will
travel before being absorbed. If the absorption coefficient is too high or too low, the electron may be created
in a region where it can not be eventually collected as usable signal, reducing thus the quantum efficiency.

On the other hand, the recombination lifetime is the time during which photon-induced electrons are
mobile within the silicon before they transition back to the valence band. Longer lifetimes increase the
probability of photoelectrons to be captured and read out from the CCD, thereby increasing the quantum
efficiency.

Finally, the materials overlying the silicon are mainly added on top the CCD to build structures for
reading the collected charge out of the device. Ideally, those materials should be transparent, but, depending
on wavelength, they absorb or reflect light, decreasing the quantum efficiency.

8 Namely, four phase (4Φ) CCDs, three phase (3Φ) CCDs, pseudo two phase (P2Φ) CCDs, true two phase
(T2Φ) CCDs and virtual phase (VΦ) CCDs. See [39,98] for a detailed description.

9 Typically, 50,000 electrons lead to a video signal amplitude of 1Vpp at the output for an amplifier gain of
1 [274].
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Fig. 2.10. Full-Frame CCD architecture.

frame transfer (FT) CCD, the interline transfer (IL) CCD, or the frame interline transfer (FIT) CCD
overcome this problem by means of a separate array where the charge packets are quickly transferred
to be read out in parallel with the next integration. See [39,98] for a more detailed explanation.

Finally, the signal produced by the output amplifier is transformed into an analog video signal con-
forming to any of the internationally accepted standards (NTSC, EIA, S-video, RGB, ...), or else into a
digital signal suitable to be directly used in a digital system (RS-422, USB, IEEE 1394/Firewire/iLink,
...).

2.4.3 Colour image formation in CCD cameras

Since a light sensitive element just provides a measure of the light incident onto it, CCD sensors
can be said to be monochrome in nature, and additional means have to be provided to quantify the
spectral composition of the incoming radiation. A straightforward solution consists in placing a “wheel
of filters” in front of a monochrome camera and taking several images of the scene exchanging the
filters from exposure to exposure. In colour cameras, colour filters are also involved, in one form or
another, in the operation of the sensor. Two main techniques are of use nowadays. On the one hand,
the multi-CCD approach makes use of a beam-splitter prism which separates the incoming light in
several colour bands and casts the filtered radiation onto a set of spatially separated CCD sensors,
one for every colour band. In contrast, 1-CCD cameras incorporate an array of colour filters on top of
the CCD, which specializes every collection cell for measuring radiation within a certain wavelength
range. Due to its lower complexity, current colour cameras typically implement the 1-CCD approach,
contrary to the multi-CCD solution, which has been relegated to high-quality expensive cameras due
to the intricacy of their manufacturing.

The arrangement of the colour filters of single CCD systems typically follows a stripe or a mosaic
pattern, or a mixture of both; the precise layout, however, varies from manufacturer to manufacturer
on the basis of colour reproduction criteria [42, 98]. By way of example, see figures 2.11(a), (b) and
(c), where mosaic (b) corresponds to the Bayer colour filter10, implemented in the majority of current
1-CCD colour cameras. As can be observed, the arrays typically contain twice as many green filters
than red and blue filters, to take into account the largest sensitivity of the human eye to the green
wavelength range (centered around 560 nm). On the other hand, both types of patterns present dif-
ferences regarding horizontal and vertical resolution for red, green and blue detectors. Further, the

10 Named after his inventor, the Kodak engineer Bryce E. Bayer. In his original patent (US patent #3971065,
1976), he suggested that either of two color schemes could be employed for capturing multi-color information
with a camera’s sensor: RGB (Red-Green-Blue) or CMY (Cyan-Magenta-Yellow).
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Fig. 2.11. Examples of colour filter arrays: (a) RGB colour filter array, stripe pattern; (b) RGB colour filter
array, mosaic pattern (Bayer); (c) RGB colour filter array, stripe/mosaic pattern; (d) CMYG colour filter array,
mosaic pattern.

(a) (b)

Fig. 2.12. Example of demosaicking: (a) raw CCD data; (b) final image. (Reproduced from
http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

aforementioned configurations correspond to the so-called primary colour mosaics, based on primary
colours red, green and blue, in front of complementary colour mosaics, which use opposite colours cyan,
yellow and magenta and are implemented as 3-colour patterns, or else as 4-colour patterns, by adding
green filters, as shown in figure 2.11(d). Among the advantages of using complementary mosaics are
increased sensitivity resulting in improved light transmission through the filter, and a stronger sig-
nal [98]. This occurs because CMY filters exhibit a reduced absorption of light waves in the visible
region when compared to the corresponding RGB filters. However, the use of CMY/CMYG mosaics
implies adding a further step of conversion of the data collected by the sensor into RGB values.

After the capture of the image, the missing colour information between pixels in the raw image
provided by the CCD must be filled in through a process known as demosaicking (see figure 2.12 for
an example). A variety of sophisticated and well-stablished image processing algorithms are available
to perform this task directly on the integrated circuit. In order to determine the correct colour for each
pixel in the array, well-known interpolation techniques such as nearest neighbour, linear, cubic or cubic
spline are applied using selected neighbouring pixels to produce separate estimates of chromaticity and
luminosity for every pixel in the array. In this way, luminosity can take advantage of the full resolution
of the CCD array and only chromaticity suffers from the loss of resolution due to the specialization of
collection cells. The precise interpolation algorithm, however, determines the quality of the final image,
reason by which many camera manufacturers consider their best color interpolation algorithms to be
trade secrets and do not publish them [42]. In general, these techniques produce excellent results at
image places where colour changes slowly over a large number of pixels, but can suffer from artifacts
such as aliasing at edges and boundary regions where large colour and/or intensity transitions occur.
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2.4.4 CCD cameras operation and noise modelling

Ideally, the number of electrons collected at a given cell for colour band c, Ic, is given by [93]:

Ic = T

∫

Λ

(∫

y

∫

x

E(x, y;λ)Sr(x, y)η(λ) dx dy

)
τ c(λ)dλ , (2.40)

where (x, y) are continuous coordinates on the sensor plane, T is the integration or exposure time,
E(x, y;λ) is the irradiance incident at point (x, y) over the collection site, Sr(x, y) is the spatial response
of the collection site, η(λ) is the ratio of electrons collected per incident light energy (i.e. it is a sort
of quantum efficiency), and λ, Λ and τ c(λ) represent the same as in equation 2.32. The spectral
responsivity s(λ) of equation 2.32 would correspond to η(λ) in equation 2.40 if Sr(x, y) = 1.

As well as any other sensor, CCD arrays are affected by noise, so that a neat measure of the
actual irradiance spatial distribution, as indicated by equation 2.40, can rarely be obtained. Many
papers and books have been written about the different sources of CCD noise, above all referred to
application domains where the irradiance measure is critical, such as Astronomy. For computer vision,
the most important consequence is that, apart from the random noise and contrarily to what is typically
assumed, the CCD array does not really consist of equivalent imaging cells.

This noise corrupts the signal along the different steps which lead to the formation of the image
—charge collection, charge transfer, and the conversion of charge into a measurable voltage— and
comes either from processing errors during CCD fabrication and from the behaviour of the underlying
electronics. Among the different sources of noise, the shot noise, the dark current shot noise, the fixed
pattern noise, and the photo-response non-uniformity noise are generated in the CCD itself, while the
reset noise, the amplifier noise, the 1/f noise, and the quantization noise occur during amplification
and conversion of the analog signal to a digital output. All these noise terms are revised in the following
and graphically illustrated in figure 2.13.

On the one hand, processing variations and photomask alignment errors during CCD fabrication
can give rise to differences in detector size, spectral response and thickness in coatings which eventu-
ally cause small variations in quantum efficiency and charge collection volume from collection site to
collection site [98]. As a consequence, even if a CCD is uniformly illuminated, these variations lead
to a site-to-site non-uniformity in collected charge. This spatial irregularity is often referred to as
photo-response non-uniformity (PRNU), although other authors use the term fixed pattern noise [93].

On the other hand, atoms in the silicon lattice vibrate and push each other due to their thermal
energy. As the atoms bump into each other, they can excite electrons into the conduction band, even
in the absence of light. The result is a pool of electrons known as dark or thermal electrons, whose rate
of generation is termed dark current . The expected number of dark electrons generated is proportional
to the integration time T , and is highly temperature dependent. Since dark electrons can be stored at
collection sites, they become indistinguishable from photoelectrons, increasing, thus, the magnitude of
the resulting signal11. Dark current is known to vary from site to site and this variation is called fixed
pattern noise or dark current non-uniformity (DCNU). It is due to differences in, again, detector size,
doping intensity and foreign matter getting trapped during fabrication [98]. Besides, dark electrons
also accumulate at collection sites while the array is being read out, so that, in large arrays, far pixel
measures can show a larger contamination by dark current than pixels close to the on-chip amplifier.
This effect is generally known as shading . Although DCNU and PRNU are different, they are sometimes
collectively called pattern noise.

A third source of noise stems from both the statistical nature of photon production and the way
how incident light is measured. This can be understood more easily going back to the analogy of rain
drops falling onto an array of buckets. Both rain drops and photons arrive discretely, independently and
randomly and are described by Poissonian statistics. If the buckets are very small, some buckets may
collect more drops than others. If the rain was let to fall long enough, all the buckets would measure
the same value, but for short measurement times the spread in measured values is non-negligible. This

11 In low-signal and/or long-exposure-time applications, cooling devices (e.g. thermoelectric coolers [98]) and
specific dark-current-reduction strategies (e.g. multi-pinned phase technology [109]) must be employed to
avoid dark current from completely contaminating the irradiance measurement.
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Fig. 2.13. Noise sources affecting CCD operation: [left] the array is viewing a uniform source that produces
identical output of amplitude A for every pixel (all these processes occur simultaneously; 1/f noise has been
magnified for illustration purposes); [right] noise transfer diagram.

effect also takes place in the temporal domain, so that, rarely the same number of photons is counted
for a given pixel and two consecutive but independent observation intervals of the same length [109].
In the end, the probability of p photons incident on a CCD cell along an observation window of length
T seconds is given by P (p|ν, T ) = (νT )pe−νT /p!, where ν is the photon production rate; from this, the
variance of the number of incident photons equals the mean, i.e. νT . The generation of photoelectrons
is accordingly perturbed, so that, if the signal produced is Ic, the corresponding standard deviation
of the signal is given by

√
Ic. This noise is known as photon or shot noise and is always present in

imaging systems. As has been seen, it is, in fact, the uncertainty in the data. Similarly to photon noise,
the production of dark electrons also responds to Poissonian statistics, so that a further source of noise
arises, the dark current shot noise, whose standard deviation equals the square-root of the number of
thermal electrons generated within the image exposure time.

Writing all the aforementioned in a formal way, the total charge at a collection site can be expressed
as the sum of two Poisson-distributed random variables P(K(i, j)Ic(i, j))+P(µdc(i, j)), or, separating
constant and random terms [93]:

(K(i, j)Ic(i, j) + µdc(i, j)) + N c
S(i, j) + Ndc(i, j) , (2.41)

where:

• Avoiding a certain dependence on wavelength, K(i, j) is a constant associated with collection site
(i, j) representing the joint effect of the product of η(λ) and Sr(x, y) (equation 2.40), particularized
for cell (i, j). It accounts, thus, for the PRNU. Taking the corresponding scaling of the product of
η(λ) and Sr(x, y) out from within the integral, a random variable K, representing the variation
over K(i, j) values, could be defined, being its (spatial) mean and variance EI [K] = 1 and VarI [K],
respectively.
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• µdc(i, j) is the average dark charge for image cell (i, j). Its variation across the array would account
for the DCNU.

• N c
S(i, j) and Ndc(i, j) are zero-mean random variables corresponding to, respectively, photon and

dark current shot noises. As discussed before, the variances of N c
S(i, j) and Ndc(i, j) are, respec-

tively, the expected number of photoelectrons generated for collection cell (i, j), K(i, j)Ic(i, j), and
the expected number of dark electrons also for collection cell (i, j), µdc(i, j).

After integration time, the CCD transfers the charge to the output amplifier for readout. As the
charge packet moves from storage site to storage site, the larger the charge transfer efficiency (CTE)
the fewer electrons are left behind. In, say, a 1000 × 1000 array, the charge packet farthest from the
output amplifier must travel 1000 pixels along the corresponding vertical shift register and 1000 pixels
more along the horizontal shift register (see figure 2.10). Furthermore, depending on the physical
structure of every pixel, a number of transfers will be needed to pass the charge from one pixel to the
next; in a four-phase device, the charge circulates through four wells, so that, following the example, a
total of 8000 transfers would be involved in the worst case. Arrays for consumer applications typically
have CTE greater than 0.9999 while for scientific devices it approaches 0.999999 [98]. Because of these
high efficiencies, it is usual to omit the CTE from the noise models, although it should be included for
very large arrays (e.g. 0.99998000 = 0.4493 while 0.9999998000 = 0.992). In particular, in this model,
it has been considered reasonable to assume that all the charge collected at each site is transferred to
the output amplifier (i.e. CTE ≈ 1).

At the CCD output, the signal from the image sensor is converted from the charge domain to the
voltage domain by means of a sense capacitor and a source-follower amplifier [98]. The different noise
components involved in this process are briefly reviewed in the following [41]:

• On the one hand, the CCD sense capacitor has to be reset to some reference level before measuring
each charge packet. Once more, thermal noise generated by the resistance of the resetting FET
transistor makes the voltage in the capacitor uncertain after the reset, being the associated standard
deviation given by

√
kTC/q, where k is the Boltzman’s constant, T is the absolute temperature,

C is the sense node capacitance and q is the electron charge. This noise is known as reset noise or,
by obvious reasons, kTC noise.

• On the other hand, the amplifier introduces mainly two sources of noise, collectively named as
readout noise. In the first place, the amplifier resistance causes thermal noise whose magnitude is
independent of frequency. It is, therefore, white noise and is usually referred to as simply amplifier
noise. In the second place, the flicker noise, also called 1/f noise, is noise that has an approximately
inverse dependence on frequency: the higher the frequency or pixel rate, the lower the noise. Its
effects on the input signal are shown in figure 2.13(f). (See [109] for a more detailed discussion
about amplifier related noises.)

Among these three sources of noise related with the output stage of the CCD, both the reset and
the 1/f noise are drastically reduced by means of a further signal processing step known as correlated
double sampling [98, 109]. This technique mainly consists in measuring the voltage difference in the
signal outputting the on-chip amplifier, instead of using the voltage amplitude directly.

As a consequence of the operation of the pair sense-node/on-chip-amplifier and the previous com-
ments, a further zero-mean noise factor independent of the number of collected electrons NR, repre-
senting the amplifier noise, is included in the outputting signal after equation 2.41. As this signal is
later transformed into a video signal suitable to be used by the subsequent processing steps, a combined
gain (Ac)′, including the amplifier and the camera circuitry, appears as a multiplicative factor in the
final expression for the voltage signal leaving the camera:

V c(i, j) = (K(i, j)Ic(i, j) + µdc(i, j) + N c
S(i, j) + Ndc(i, j) + NR) (Ac)′ . (2.42)

Finally, since the analog video signal must be converted to digital form to be used by a computer, a
final noise source NQ appears in the form of the quantization error. NQ can be shown to be a zero-mean
random variable with a uniform probability distribution over the range [− 1

2 , 1
2 ] and variance 1/12 [98].

In this way, the final digital value Dc is given by:
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Dc(i, j) = (K(i, j)Ic(i, j) + µdc(i, j) + N c
S(i, j) + Ndc(i, j) + NR)Ac + NQ , (2.43)

where Ac is the gain which transforms charge into digital intensity levels (i.e. a scaled version of (Ac)′).
Now, the digitized signal corresponding to pixel (i, j) can be stated as a random variable Dc(i, j) =

µc(i, j) + N c(i, j):

Dc(i, j) =

µc(i,j)︷ ︸︸ ︷
(K(i, j)Ic(i, j) + µdc(i, j)) Ac

+

Nc(i,j)︷ ︸︸ ︷
(N c

S(i, j) + Ndc(i, j)) Ac

︸ ︷︷ ︸
Nc

e (i,j)

+NRAc + NQ︸ ︷︷ ︸
Nc

f

, (2.44)

where N c
e depends on the number of electrons effectively stored at image cell (i, j), while N c

f does not.

2.4.5 Other aspects of CCD camera operation

When converting light into an electrical signal, the performance of real imaging sensors can be altered
by several other factors not yet taken into account that can prevent from getting the theoretical digital
value. This unexpected behaviour can be either caused by the CCD chip and the associated electronics
or due to the camera optics. Although this section deals with the former and the latter is considered out
of the scope of this work since it is the subject of study of geometric camera calibration, the sensitivity
fall-of due to the camera optics does affect the radiometric performance of the whole imaging system.
Correspondingly, it will also be discussed.

A number of these anomalous behaviours is reported in the physics-based vision literature [39, 82,
119,188,270]. The most representative ones are briefly discussed below:

• As equation 2.38 shows, the camera optics does not strictly give rise to a uniform brightening of
the CCD. The maximum irradiance is achieved at the sensor center, while the brightness decrease
is circular and function of the distance to this center. It can be easily deduced that the irradiance
ratio between a given pixel at (i, j) and the pixel at the image center (i0, j0), given the angle ϕ
from equation 2.38 for pixel at (i, j), is:

E(i, j;λ)

E(i0, j0;λ)
= cos4 ϕ(i, j) . (2.45)

Of course, this model is valid just for a very simple imaging system with an only thin lens. In
the case of a real camera optics, where compound lenses are used, the problem gets worse. It
is because, roughly speaking, some of the rays that pass through the first lens may be occluded
by portions of the second lens, and so on. This depends on the inclination of the entering ray
with respect to the optical axis. Thus, points in the image away from the optical axis benefit less
from the light-gathering power of the lens than does the point on the optical axis. This effect is
called vignetting [102]. As in the case of the PRNU, this brightening variation can be modeled
by a multiplicative constant altering the charge produced by the collection cell Ic(i, j), so that,
modifying accordingly equation 2.44, the final digital value produced by the camera would be:

Dc(i, j) = (K1(i, j)K2(i, j)I
c(i, j) + µdc(i, j) + N c

S(i, j) + Ndc(i, j) + NR)Ac + NQ(i, j) , (2.46)

where K1 would correspond to the PRNU, while K2 would represent the brightening variation due
to the camera optics. Clearly, unless one is interested in separating both effects, from a practical
point of view, K from equation 2.44 can be redefined as the product of K1 and K2, as in [269,270].
Therefore, any estimation of K will include the joint effect of both sources of sensitivity reduction.

• Although CCD sensors present a high linearity, CCD cameras in general delinearize the output
signal for display requirements. This is because the input voltage U of a cathode ray tube and the
radiant intensity I emitted by the phosphorus have an exponential relationship I ∝ Uγ , where γ
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Fig. 2.14. Example of pre-kneeing: before activating the pre-kneeing circuit, a global linear relationship holds
between collected charge and output voltage (solid line); after activating the pre-kneeing circuit, a piece-wise
linear relationship (knee-shaped) is established between charge and voltage (dashed line). As a consequence,
the input signal stays longer in the dynamic range of the camera (up to Q2).

is the so-called gamma value and takes value typically between 2 and 3. In order to compensate
for this non-linearity, camera makers introduce in commercial cameras a circuit for doing gamma
correction by which the output voltage Uout is given as:

Uout = Umax

(
Uin

Umax

) 1
γ

. (2.47)

Most scientific and industrial cameras allow switching the gamma value to 1 to produce a linear
output. If this is not the case, gamma re-correction can be done by inverting equation 2.47 if γ
is known. Otherwise, the output signal must be corrected using a calibration image containing a
number of gray patches of known reflection properties, to calculate γ by regression or for building
a linearization look-up table [188].

• Every collection site of a CCD sensor can store a limited amount of electrons. When this limit
is exceeded, the additional charge overflows to neighbouring cells, causing them to report false
light levels. This effect is known as blooming and makes manifest as a more or less extensive
white blob around the affected pixels. Some CCD chips alleviate blooming by means of overflow
drain structures built within the device, although at the cost of a lower dynamic range or reduced
aperture [98]. Otherwise, special care must be taken when finding blobs of highest intensity in the
image, usually corresponding to specularities of the scene due to the huge amount of light they
convey.

• Although a collection site did not reach its charge saturation level, the resultant electrical signal can
exceed the highest voltage the ADC can process. When this happens, clipping of the input signal
occurs and important deviations in the hue of the pixel can arise because clipping is not equally
applied to all the colour channels, just to the channels surpassing the maximum voltage accepted
by the ADC. In order to increase the dynamic range of the ADC and reduce the probability the
signal gets clipped, some cameras incorporate a so-called pre-kneeing circuit [119]. This circuit
changes the slope of the linear relationship between collected charge and output voltage from a
certain level of the input signal, with the net effect of a certain attenuation for higher levels of
charge (see figure 2.14). As a result, the dynamic range of the camera is enlarged, although at the
cost of an output signal which is no longer globally linear.

• It is commonly assumed that the integration performed in equations 2.32 and 2.40 is over the
visible spectrum. However, the silicon that is used in CCD chips is particularly sensitive to the
near infrared band, as it was already observed in section 2.4.2. In colour images, the additional
light that enters the camera in the infrared band makes all the colours lighter and less saturated
than humans expect to see them. High quality cameras usually incorporate infrared cut-off filters
to force null quantum efficiency outside the visible spectrum (see figure 2.7(b)).

Among the different problems outlined above, blooming and clipping can be greatly alleviated, if not
completely removed, by an adequate regulation of the camera aperture or the radiance of the light
source. The others, as commented above, require more sophisticated methods of solution. Anyway,
cameras specially designed to be used as measurement systems tend to incorporate means to avoid
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such problems. Other cameras, however, are more oriented towards producing good-looking pictures
and special care must be placed on their usage.





3

Review of Image Segmentation Approaches

This chapter summarizes the most significative work related with physics-based segmentation and edge
detection. It will however start with a brief review on general approaches for image segmentation and
edge detection in order to put physics-based algorithms into proper context. Furthermore, a taxonomy
for the physics-based segmentation algorithms reviewed in this chapter will be introduced, to ease a
discussion on their strong and weak points.

The rest of the chapter is organized as follows: first, section 3.1 reviews general approaches for
image segmentation and edge detection; next, section 3.2 focuses on the roots of physics-based vision,
particularizing on image segmentation; a state of the art in physics-based segmentation is presented in
section 3.3; finally, a summary of this state of the art, together with a discussion about what has and
has not been done in physics-based segmentation, is included in section 3.4.

3.1 Brief Review on General Image Segmentation

The inherent interest on the automatic processing of images has led to multitude of attempts to confer
machines with the sense of sight since almost the first digital computers. Although the first theories
on automatic processing of images are dated back in the fifties, the thesis by Roberts in 1965 [238] is
generally accepted as the first research work related with the understanding of the three-dimensional
outer world by means of computers [115]. Throughout this nearly forty years of research, image seg-
mentation and edge detection are probably the vision tasks which have received most attention and
effort due to their character of being fundamental preprocessing steps towards scene understanding in
computer vision. As a consequence, an unaccountable amount of methods have been proposed during
this period, what can be easily checked by the large amount of references (above 150 in many cases)
which the numerous surveys published so far contain [26,54,84,153,183,220,237,240,244,257,260,314].

Due to the well-known larger computational requirements of colour image processing, during an
important part of this forty-year-period, most of the methods were devised for dealing with gray-
level images, despite colour information was known to yield more reliable segmentations. Nowadays,
however, this is no longer a major problem because of the continuous increase in computers power and
speed, and the accompanying decrease in computation cost, together with the availability of relatively
inexpensive colour cameras. Accordingly, there has been a remarkable growth in algorithms for colour
image segmentation in this last decade, although on many occasions they are just generalizations of
methods for gray-level segmentation and only in some cases the physics of interaction of light with
coloured materials is taken into account [26,153,257].

Many vision textbooks distinguish between two approaches to tackle the segmentation of an image:
region- or area-based methods, and contour- or edge-based methods (see [11, 44, 108, 116, 182, 288],
among many others). In the region-based approach, all pixels that are homogeneous in some property
are grouped together and are labelled to indicate that belong to the same region. Edge-based methods,
however, look for pixels that lie on the region boundaries and, therefore, separate groups of pixels
showing different values of a certain property. Similarity and continuity are thus the pixel qualities
involved in, respectively, the region- and edge-based approaches. Other authors split the region-based
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approach on the basis of whether spatial proximity in the image plane is taken into account or not in the
process of pixel grouping, leading to a third class called pixel- or feature-space-based segmentation [153,
257,260]. This third family embraces techniques where the resultant regions are required to correspond
to “connected components” in the feature space but not over the image.

Moreover, each of these three categories is in turn subdivided in subclasses according to the com-
putational techniques they usually make use of. More specifically, the region-based family comprises
region-growing and split-and-merge strategies, the pixel-based approaches refer mainly to histogram
analysis and clustering methods, and, finally, edge-based segmentation is subdivided according to the
way how edges are found: either using global or local information, or by means of first-order or second-
order derivative operators [257]; active contours and other variants are also considered in a different
subfamily [153].

The different segmentation surveys published so far refine the above-mentioned categories, focus on
some of them or add new ones according to the use or not of particular (mathematical) techniques. In
order to introduce the main approaches utilized in one form or another for image segmentation through-
out this forty-year period of computer vision, the following summarizes briefly and in chronological
order the different taxonomies presented in some of those surveys:

• Rosenfeld and Davis [240] classify image segmentation techniques on the basis of the image model
assumed for the particular technique to be applicable to it. Algorithms are initially catalogued
according to the nature of the working model, namely statistical or spatial. Although colour and
multi-spectral images are also considered, the study focus on gray-level images. Different statistical
models are considered and, therefore, new categories appear: first-order models (i.e. gray-level
histograms), nth-order models (i.e. co-occurrence matrices), models for local properties of image
pixels (i.e. gray-level differences for pairs of points), random field models and time series models.
Referring to the spatial models, Rosenfeld and Davies distinguish between methods based on:
foreground/background models, image decomposition models (i.e. how is the image structured in
terms of regions), the inter-region transitions and the shape of the regions with regard to either
their interiors or their boundaries.

• Fu and Mui [54] discuss segmentation from the viewpoint of cytology image processing. They
categorize segmentation techniques into three classes: (1) characteristic feature thresholding or
clustering, (2) edge detection and (3) region extraction. The different techniques described are the
following:
– threshold selection schemes for gray-level and structural (texture) histograming;
– clustering schemes, considered as the multidimensional extension of the concept of thresholding,

based on multi-spectral information, mean/variation of gray-level, texture, colour, etc...;
– edge detection, both parallel (the decision of whether a set of points are on an edge is dependent

on the gray-level of the set and its neighbours) and sequential (the decision is taken according
to the previously examined image points); a special emphasis is put on frequency filtering, gra-
dient operators, adaptive local operators, functional approximations, heuristic search, dynamic
programming, relaxation and line and curve fitting;

– region merging, region splitting and combinations of both.
• Haralick and Shapiro [84] classify image segmentation methods as: (1) measurement space guided

spatial clustering, (2) single linkage region growing, (3) hybrid linkage region growing, (4) centroid
linkage region growing, (5) spatial clustering and (6) split and merge.

• Sahoo et al. [244] survey only segmentation algorithms based on thresholding. They categorize
global thresholding techniques into two classes: point dependent techniques and region dependent
techniques. Multi-thresholding techniques are also considered.

• Spirkovska [260] use the three-class classification mentioned above, pixel-based, edge-based and
region-based schemes, and study some common image segmentation approaches such as Otsu’s
thresholding, Chow-Kaneko’s adaptive thresholding, Yanowitz and Bruckstein’s adaptive edge-
based thresholding, Parker’s local intensity gradient and Horowitz and Pavlidi’s split, merge and
group approaches.

• Pal and Pal [220] initially distinguish between two main approaches: the classical one, which involves
histogram thresholding, edge detection, relaxation and semantic and syntactic methods, and the
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fuzzy mathematical approach, also instantiated as methods for edge detection, thresholding and
relaxation. After this first dichotomy, segmentation techniques are distributed among: (1) gray-
level tresholding; (2) iterative pixel classification, in the form of relaxation, Markov Random Fields
or Neural Networks; (3) surface-based segmentation, referring to range images; (4) color image
segmentation; (5) edge detection; and (6) methods based on fuzzy sets, such as fuzzy thresholding,
fuzzy clustering and fuzzy edge detection.

• Skarbek and Koschan [257] first identify four broad types of regions:
1. region as a connected component in a feature space;
2. region as a (maximal) connected set of pixels for which a uniformity condition is satisfied;
3. region as a connected set of pixels bounded by edge pixels; and
4. region as a surface or an object of homogeneous surface material.
Both region definitions 1 and 2 use some sort of uniformity predicate, but in case 1 it is pixel-
based and in case 2 it is area-based. Consequently with this four definitions, four more or less large
groups of segmentation methods are distinguished: pixel-based (definition 1), area-based (definition
2), edge-based (definition 3) and physics-based (definition 4). Next, within the pixel-based category,
up to three different subcategories are considered: histogram thresholding, clustering in colour space
and fuzzy clustering in colour space. Subsequently, region splitting, region merging, region growing
and split-and-merge techniques are distinguished among the area-based methods. As for edge-
based segmentation, local techniques, using only information of the neighbourhood of pixels, are
discussed against global techniques, making use of a sort of global optimization. Finally, physics-
based methods are subdivided in approaches dealing exclusively with inhomogenoeus dielectrics
and general approaches.

• Cheng et al. [26] distinguish up to six categories of colour image segmentation methods after a
brief review of gray-level segmentation. The six categories proposed include histogram thresholding
(mode method) and colour clustering, region-based approaches, edge detectors, fuzzy-sets based
techniques, physics-based approaches and neural network approaches.

• Lucchese and Mitra [153] make a first distinction between feature-space based techniques, image-
domain based techniques and physics-based techniques. Afterwards, on the one hand, the feature-
space-based group is decomposed in clustering, adaptive k-means clustering and histogram tresh-
olding. On the other hand, split-and-merge approaches, region-growing approaches, edge-based ap-
proaches and neural-network-based approaches are put in the image-domain-based group. Finally,
no distinction is made within the physics-based group.

As can be observed in this brief review, the physics-based category appears only in the last four
surveys [26,153,220,257] despite the work in physics-based vision started in the mid-1970s, many years
before the publication of some of the other five surveys considered in this section.

3.2 The Roots of Physics-Based Segmentation

The image understanding problem has traditionally been solved by means of low-level segmentation
or feature extraction processes and higher-level reasoning stages on top. The optimism surrounding
symbolic reasoning and artificial intelligence during the 1970s relegated to low-level vision the task of
dividing an image into (simple) regions on the basis of brightness and colour, leading to regarding the
lower levels of processing as statistical image processing problems where the major concern were to
determine statistically significant changes of pixel values under the presence of noise [273]. Obviously,
the generated edge or region images generally outlined not only material boundaries, but also shadows,
highlights and object edges. More extensive low-level processing was considered unnecessary since
higher levels were assumed to be able to understand, identify, and merge these simple regions by
combining them across highlights or shadows either by matching image features with object models or
by determining the physical cause of edges or regions. Physical processes in the scene have thus not
been a strong point of interest in the traditional line of computer vision research.

Early work in physics-based vision dates from the 1970s, when Berthold Horn at MIT introduced
optical models of reflection and imaging to the vision community, and demonstrated that these optical
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laws could actually be used as a source of information to aid in the process of automatic visual
interpretation [100]. Theoretically, using Horn’s model, some physical characteristics of a surface,
including shape, could be estimated from a single image. However, few researchers adopted a similar
approach to machine vision through the 1970s and early 1980s, because of, on the one hand, the
important restrictions of the model of image formation (one perfectly diffuse, perfectly reflective surface,
i.e. a Lambertian surface, under one point light source, without noise and perfect cameras), and, on
the other hand, because Horn’s work raised more questions that it answered [94]:

• how to deal with the inherent ambiguity that remains when optical laws are applied to an image;
• how to segment the image, that is, determine the regions with uniform optical properties;
• how to obtain reflection models for real materials, or whether there is perhaps a universal reflection

model;
• how much calibration of cameras is required, and how to do it;
• how much knowledge about the scene is required, and how to get it in realistic scenarios.

Throughout this period of time, there was no sizable community of researchers in the area, because of
skepticism about whether there could be any satisfactory solution to these issues. Little research was
done in the area and it was typically tested only on relatively simple synthetic images generated under
highly idealized assumptions.

In the 1980s, an explosion of research in this area began, leading to the adoption of the term
physics-based vision to distinguish this area from more traditional approaches. In particular, Shafer’s
Dichromatic Reflection Model [252] allowed researchers to begin looking at a larger class of materials,
inhomogeneous dielectrics, which was later complemented by the Unichromatic Reflection Model for
metals by Healey [88]. Since then, there has been an active community of researchers in physics-based
vision leading to an important amount of literature mainly in the areas of shape recovery and colour
image understanding [94].

3.3 State of the Art in Physics-Based Segmentation

As has been said in the previous section, relatively little effort has been devoted to applying the physics
of image formation to the segmentation of an image with respect to the effort invested in traditional
segmentation. In general, physics-based segmentation strategies look for changes in objects reflectance,
or equivalently surface material, either by direct or by indirect means. Nevertheless, an image encode
many other properties of scene objects which, from a theoretical and physics-based point of view, could
be used for segmentation purposes. They will be reviewed and discussed later, in chapter 4.

Among the several physics-based segmentation strategies which have been proposed so far, some of
them are based on estimating directly the reflectance of the surfaces present in the scene, others look for
certain configurations of clusters in colour space, as it is predicted by the Dichromatic Reflection Model,
others are based on the continuity of the image surface when no material changes are involved, and,
finally, others use photometric invariants in their different forms or work over specialized colour spaces.
Although these algorithms can also be categorized according to any of the taxonomies mentioned in
section 3.1, the classification proposed here makes more sense for physics-based vision algorithms since:
(1) the way how the segmentation problem is addressed differs significantly among these classes, (2)
important differences reside at the theoretical level on some occasions, and (3) the sort of techniques
employed by every class are quite different to one another. Referring to this last point and by way of
example, it is worthwhile noting that methods based on looking for certain configurations of clusters
in the colour space make use of, mainly, Principal Component Analysis (PCA), while methods related
with photometric invariants are more prone to histograming and clustering techniques.

The following sections review an important part of physics-based segmentation and edge detection
algorithms on the basis of the proposed classification. Among the different segmentation algorithms
proposed in the literature, this survey restricts to those such that the paper where were published
explicitly mentioned a model of image formation with a minimally sound physical basis. On the other
hand, every algorithm is described by means of a sort of form, which contains, in this order:
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(1) the researchers involved in the different papers where the algorithm appeared,
(2) the references to those papers together with the year of publication,
(3) the model of image formation assumed in the work, using the notation of the original papers

conveniently explained, and
(4) a brief description of the algorithm.

Furthermore, each algorithm is assigned a survey entry with the following structure: 3.3.(PB type).xx,
where xx is a correlative number and (PB type) is 1, 2, 3 or 4, for, respectively, reflectance-
estimation-based algorithm, cluster-analysis-based algorithm, image-surface-continuity-based algo-
rithm, and photometric-invariant-based algorithm. Finally, the list of algorithms surveyed is ordered
in chronological order of the first publication related with the work.

3.3.1 REFLECTANCE ESTIMATION

3.3.1.1 Estimation of reflectance from three non-coplanar points of Lambertian surfaces

Auhor(s): Chia-Hoang LEE [140–142] and Azriel ROSENFELD [140–142]

Reference(s): [140] 1983, [141] 1985, [142] 1989

Image formation model:
I = (λ̺) cos θ ,

where I is the brightness value found in an image pixel, λ represents the illumination intensity, ̺ is
the reflectance and θ is the angle between the surface normal at the scene point considered and the
light source direction. A distant point light source is assumed. The work only refers to gray-level
images.

Description: The authors develop a method for estimating the product (λ̺) at every pixel P using
only the intensity information of P and two pixels Q and R on opposite sides of P in the direction
of the gradient, provided they did not come from coplanar points in the scene. (λ̺) is determined
as the quotient between the intensity at P , IP , and cos θP . The latter is proposed to be estimated,
under the non-coplanarity condition, in the following way:

tan θP =
IR − IP + 0.5∆2 · IP

∆ · IP
,

∆2 =
2IP − IQ − IR

IP
,

∆ = ∆Q ≈ ∆R ,∆Q = θQ − θP ,∆R = θP − θR .

To reach this closed-form solution, the authors make use of the approximation cos ∆ ≈ 1 − 0.5∆2

which implies ∆ = ∆Q ≈ ∆R are assumed small. The values estimated for (λ̺) are then collected
in a histogram for the whole image. The peaks of such histogram are expected to correspond to
the different materials in the scene. A median pre-filtering of the image is suggested to improve
the accuracy of the estimates.

3.3.1.2 Estimation of reflectance from umbilical points on Lambertian surfaces

Auhor(s): Alex P. PENTLAND [224,226]

Reference(s): [224] 1984, [226] 1989

Image formation model:
I = (ρλ)n · l ,
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where I is the brightness value found in an image pixel, λ represents the illumination intensity, ρ
is the reflectance, n is the unit surface normal at the scene point considered and l is the direction
towards the light source. A distant point light source is assumed. The work only refers to gray-level
images.

Description: In this work, Pentland proved that, for umbilical surface points (points with equal
principal surface curvatures), first and second image derivatives allowed estimating the composite
body reflectance (ρλ) for those points and provided the corresponding formulation:

(ρλ)2 =

(
−Ixyη2R2

γ
+ IxR

)2

+

(
−Ixyη2R2

χ
+ IyR

)2

+

(
−Ixyη3R2

χγ

)2

,

R =
χγ

2Ixyη2

(
(χIx + γIy) ±

√
(χIx + γIy)2 − 4DIxyη2

χγ

)
,

χ = cos τ sinσ , γ = sin τ sinσ , η =
√

1 − χ2 − γ2 ,

tan τ =
−(Ixx − Iyy) ∓

√
(Ixx − Iyy)2 + 4I2

xy

2Ixy
,

cos σ =
∓(Ixx + Iyy) −

√
(Ixx − Iyy)2 + 4I2

xy

2
√

IxxIyy − I2
xy

,

where τ and σ are, respectively, the tilt and the slant angles of the direction of the illumination, l,
and Ix, Iy, Ixx, Iyy and Ixy are the first- and second-order image derivatives.
The papers referenced in this survey entry are not essentially about image segmentation but about
shape from shading. However, the equations provided could be used, under the aforementioned
conditions, to estimate objects reflectance at every image pixel and to build a histogram from which
determine the materials present in the scene, in the same way as Lee and Rosenfeld’s approach [140].

3.3.2 CLUSTER ANALYSIS

3.3.2.1 Analysis of clusters in colour space for colour image segmentation

Auhor(s): Gudrun KLINKER [120–131, 254, 255], Steven SHAFER [122–131, 254, 255], Takeo
KANADE [122–131,254,255], Carol NOVAK [254,255]

Reference(s): [122–124] 1987, [120,125–128] 1988, [129,254] 1990, [130,131,255] 1992, [121] 1993

Image formation model:
C = mbCb + msCs ,

where C is the vector of camera responses for all the colour channels, mb is the body geometrical
factor, Cb is the vector of body reflection, ms is the surface geometrical factor and Cs is the vector
of surface reflection.
Furthermore:
• the NIR model: Cs(λ) = cs(λ)Ld(λ) = csLd(λ), where Ld is the SPD of the illuminant,
is assumed.

Description: Klinker et al. present a segmentation method able to cope with body and interface
reflection throughout this profuse series of papers. To this end, the shape of colour clusters in
RGB space predicted by the dichromatic reflection model is scrupulously taken into consideration.
Besides, camera limitations such as clipping or blooming are accounted for.
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The algorithm starts dividing the image in square windows and determining the dimensionality of
the corresponding colour clusters in RGB space by means of PCA. In this way, every cluster is
classified as a point, a line, a plane or a volume. Next, compatible adjacent windows are put together
since they actually correspond to the same hypothesis of image formation; adjacent windows are
considered compatible if they are not volumes but are of the same type and, if combined, the
result belong to the same class. This first fusion generates a first broad segmentation of the image.
During the following step, linear hypotheses coming from areas of the image receiving a linear
classification are exploited by means of a re-segmentation in which pixels closest in RGB space
to the same hypothesis are put together. Dark pixels, since can belong to many hypotheses, are
excluded from the process. In a subsequent step of the algorithm, planar hypotheses are generated,
trying to connect linear clusters amongst them so that can constitute a dichromatic plane. The
heuristic of the 50% is applied, by which the specular cluster is expected above the 50% of the
matte cluster, while matte clusters are expected to converge at the origin of the RGB cube. The
segmentation is refined again by using the resulting new hypotheses, adding pixels not segmented
to existing regions.
Several images of plastic objects are used in the experiments.

3.3.2.2 Colour image segmentation in S0S1S2 space

Auhor(s): Ruzena BAJCSY [7–10], Sang Wook LEE [7–10], Aleš LEONARDIS [7–10]

Reference(s): [7] 1989, [8] 1990, [9] 1992, [10] 1996

Image formation model:

I(λ) = E(λ) (gS(G)SS(λ) + gB(G)SB(λ)) ,

where I is the colour image signal, E is the illumination, gS is the geometrical factor for interface
reflection, SS is the specular reflectance, gB is the geometrical factor for body reflection, SB is the
body reflectance, and G is the geometrical variable that accounts for the viewer direction and the
source direction, where each is relative to the surface normal.
Furthermore:
• the NIR model: SS(λ) = SS

is assumed.

Description: The authors of this work model both reflectance and illumination by means of the first
three Fourier bases E0 = S0 = 1, E1 = S1 = sinλ and E2 = S2 = cos λ, so that, assuming the NIR
model, the colour image signal can be rewritten as:

I = (ǫ0E0 + ǫ1E1 + ǫ2E2) [(gSσ0S + gBσ0B)S0 + gBσ1BS1 + gBσ2BS2] ,

where ǫi and σij are basis coefficients. From this, σ0 = gSσ0S+gBσ0B , σ1 = gBσ1B and σ2 = gBσ2B

are defined. Besides, by whitening the illumination, the authors remove the terms ǫ1E1 and ǫ2E2.
Finally, an HSI space is defined as:

I = σ0 , H = tan−1 σ2

σ1
, S =

√
σ2

1 + σ2
2

σ0
.

By analyzing the new S0S1S2 space, they find that:
• in the absence of highlights, objects shading generates a straight line passing through the

origin in S space, and, as the saturation is the slope of this line with respect to the S0 axis, the
saturation values of colour points on the linear cluster are constant;

• under white illumination, highlights shift colour points upward along the S0 direction in S
space, and planar clusters containing the previous straight line are created, where the planes
are orthogonal to the S1-S2 plane; besides, highlights decrease saturation values compared to
those points without highlights;
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• shadows do not change the shape or the orientation of the linear cluster, but moves the colour
points towards the origin, leaving, thus, unaltered the hue and the saturation values; and,

• although large inter-reflections can importantly change hue and saturation, small inter-reflections
can be identified as small deviations from the linear cluster.

Therefore, local thresholding on saturation values separates body reflection from highlights and
small inter-reflections, while hue segmentation allows distinguishing among the different materials
of the scene.
Several images of plastic balls and glossy blocks are used in the experiments.

3.3.2.3 Physics-based region competition

Auhor(s): Song Chun ZHU [313], Alan YUILLE [313]

Reference(s): [313] 1996

Image formation model:

I(λ, ri) = ρ(λ, ri)Fb(v,n, s)E(λ,n, s) + Fs(v,n, s)E(λ,n, s) ,

where I is the irradiance at the sensor cell, ri is an image point, ρ is the body reflectance, Fb is
the body geometrical factor, E is the surface irradiance, and Fs is the surface geometrical factor.
As can be observed in the model, interface reflectance is assumed constant and equal to one.

Description: Although this paper presents a general approach for image segmentation, without a
priori intention of embedding a physics-based model of image formation, when applying the al-
gorithm to colour images the authors incorporate a particular case of the dichromatic reflection
model. The general algorithm is a statistical and variational approach named region competition
which minimizes a generalized Bayes/Minimum-Description-Length (MDL) criterion, which com-
bines the length of the region boundaries with the probabilities of region pixels of belonging to
them, so that a distribution probability for regions is assumed. After a random seed placement,
region boundaries start moving so as to minimize the guiding criterion until all image regions
touch. Next, a series of alternative boundary adjustment and region merging stages refine the seg-
mentation until the minimum of the guiding criterion is reached, what is proved to exist by the
authors in the paper. This general framework is next adapted to operate with gray-level, colour
and textured images.
As for the colour case, regions are modelled as elongated clusters in RGB space, whose direction
is assumed to coincide with the average direction of the RGB points involved. Next, points are
projected over the plane whose normal vector is the direction of the cluster, reducing the problem to
two dimensions. After the projection, colour points are assumed to correspond to a bi-dimensional
Gaussian distribution, what will be used in the general algorithm as the distribution probability
model. Throughout the different boundary refinement iterations, the cluster direction is updated
as well as the distribution parameters. The cluster is further classified as matte or glossy depending
on the elongation of the projected cluster, what is used to detect highlights in the image.
Results are provided for three more or less standard images, although they are not guaranteed to
have been taken with gamma correction turned off.

3.3.2.4 Robust colour segmentation using the dichromatic reflection model

Auhor(s): Chung-Kiat ONG [194,195], Takashi MATSUYAMA [194,195]

Reference(s): [194] 1998, [195] 1999
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Image formation model:
ρx = mx

b ρb + mx
i ρi ,

where ρx is the vector of sensor responses at pixel location x, mb and mi are, respectively, the
geometrical scaling factors, and ρb and ρi are the body reflection and interface reflection vectors.

Description: Without any assumption about the illumination or the materials present in the scene,
the authors of this work present an algorithm for detecting clusters in RGB space using robust
statistics and then merging the resulting clusters according to the dichromatic reflection model.
Further, they introduce the terms specular interface reflection (SIR) and diffuse interface reflection
(DIR) to distinguish specular clusters for, respectively, rather polished surfaces and rather rough
surfaces. This is because, in this last case, the specular cluster is almost indistinguishable from the
body cluster, except for a small protuberance in one side of the body cluster.
The algorithm consists of the following stages: first, ellipsoidal clusters are identified by means of
an iterative application of the Minimum Volume Ellipsoid estimator, removing clusters from the
space as are identified; next, after removing outliers by means of the Least Median of Squares
(LMedS), clusters are classified as matte, planar or unknown on the basis of the eigenvalues of the
corresponding covariance matrix and the distance of colour pixels to the corresponding geometric
entity: straight line or plane; finally, pairs of clusters whose combination gives rise to an entity
in accordance with the dichromatic reflection model are merged. Up to six thresholds are used to
model the matte and planar clusters, although all are then set as a function of the estimated camera
noise, which is also used for determining the clusters dimensionality. The final pixel labelling is
carried out by taking the predominant label in each 8-neighbourhood pixel.
Results for several images involving glossy paper and clothing are provided.

3.3.2.5 Supervised colour image segmentation in the HDI space

Auhor(s): Vladimir KRAVTCHENKO [132], James LITTLE [132]

Reference(s): [132] 1999

Image formation model:
C = mBCB + mSCS ,

where C is the vector of camera responses, mB is the body geometrical factor, CB is the body
reflection vector, mS is the surface geometrical factor and CS is the surface reflection vector.

Description: The goal of this work is the efficient segmentation of a sequence of live images for
use in real-time applications including object tracking, system navigation and material inspection.
To this end, the authors analyze the cluster structure for uniformly coloured objects in a new
colour model named Hue-Distance-Intensity (HDI), where hue is the same as in the HSV colour
space, distance is the distance from the RGB point to the gray diagonal and intensity is defined
as (R + G + B)/

√
3. After a series of experiments and taking into account camera limitations, the

pixels of a uniformly coloured object are determined to lie in two planes defined by four points
over the corresponding unsaturated pixels cluster in HDI space: P1 is the point with minimum
intensity, P4 is the point with maximum intensity, P3 is the farthest point from the P1-P4 line and
P2 is the farthest point from the P1-P3 line; from these points, planes P1-P3-P4 and P1-P2-P3
are deemed to considerably improve the recognition of object pixels. In order to cope with image
noise, a certain thickness is allocated to both planes. With this structure in mind, a compressed
Look-Up-Table (LUT) is designed so that, given an RGB triplet, it can be determined whether the
pixel belongs to the object or not. It is therefore a supervised segmentation strategy in the sense
that a LUT must be built for every object under consideration, although several can be combined
provided that no overlapping colour values among objects exist.
No image results are explicitly provided in the paper.
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3.3.2.6 Colour image segmentation for scenes containing vegetation and soil

Auhor(s): C. ONYANGO [196], J. MARCHANT [196]

Reference(s): [196] 2001

Image formation model:
L(θ, λ) = mb(θ)Lb(λ) + ms(θ)Ls(λ) ,

where L is the SPD of object reflection, θ represents the photometric angles, mb is the body
geometrical factor, Lb is the SPD of body reflection, ms is the surface geometrical factor and Ls

is the SPD of surface reflection.
Furthermore:
• the NIR model: Ls(λ) = cs(λ)Ld(λ) = csLd(λ), where Ld is the SPD of the illuminant,
is assumed.

Description: This work presents an approach for discriminating between soil and vegetation in im-
ages of natural scenes. Although they are well contrasted in near-infrared images, it is difficult to
distinguish between live and dead vegetation using only the infrared band. Because of this, the
authors consider working in RGB space. However, since it is difficult to find the clusters structure
predicted by Shafer and Klinker for such sort of images, although both materials satisfy the dichro-
matic reflection model, they adopt a different approach. Assuming the colour of the illuminant is
known (they expect daylight conditions, whose model can be obtained from CIE standards), their
algorithm is based on looking for the plane that, containing the illuminant and passing through
the origin, intersects the least number of image pixels. The angular position of pixels with regard
to this plane is then used as the discriminant.
Results are given for three real images containing both types of material and different lighting
conditions which are first estimated with the aid of a plate of Barium Sulphate, a spectrally
neutral material.

3.3.2.7 Efficient colour representation for image segmentation under non-white illumination

Auhor(s): Jae Byung PARK [222]

Reference(s): [222] 2003

Image formation model:

C(x, y) = mb(i, e, g)Cb + ms(i, e, g)Cs ,

where C is the vector of camera responses for the different colour channels, mb is the body geo-
metrical factor depending on photometric angles i, e and g, Cb is the body reflectance, ms is the
interface geometrical factor, and Cs is the interface reflectance.
Furthermore:
• the NIR model: Cs(λ) = csLd(λ), where Ld is the SPD of the directional illumination,
is assumed.

Description: This paper proposes a rotation of the RGB cube so as to make easier image segmentation
using knowledge about the clusters structure in the new colour space, called XαYβZγ by the author.
Such a rotation makes new axis Zγ coincide with the direction of the illuminant which must,
therefore, be estimated in advance. Vector (α, β, γ), from which the colour model gets its name,
is the illuminant unit direction in RGB space. Once pixels are in XαYβZγ , dichromatic planes are
orthogonal to plane XαYβ , so that more or less linear clusters are expected if pixels are projected
over such a plane. Accordingly, a histogram of tan−1(Yβ/Xβ) should contain peaks corresponding
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to the different materials present in the scene. Otsu’s algorithm [216] is applied to this histogram
to find optimum thresholds maximizing the between-class variance.
A single image of a red, a yellow and a green pepper is used to illustrate the segmentation method.

3.3.3 CONTINUITY OF THE IMAGE SURFACE

3.3.3.1 Image segmentation by directed region subdivision using the Delaunay triangulation

Auhor(s): Theo GEVERS [68,72–74], Frans GROEN [72], Vasil KAJCOVSKI [73], Arnold SMEUL-
DERS [74]

Reference(s): [72] 1991, [73] 1994, [74] 1997, [68] 2002

Image formation model:

IC = kCIa +
kCIs

d + d0
(N · L) , for C ∈ (R,G,B) ,

where IC is the intensity for colour channel C, kC is the coefficient of reflection for colour channel
C, Ia represents the amount of ambient lighting of the scene, Is is the intensity of a directional
light source, N is the unit surface normal vector at the point considered and L is the unit direction
towards the light source. From the previous equation it can be deduced that ambient and directional
illumination are assumed white. The work also assumes the integrated white condition, which,
under the white illumination assumption, can be expressed as

∫
Λ

τR(λ)s(λ)dλ =
∫

Λ
τG(λ)s(λ)dλ =∫

Λ
τB(λ)s(λ)dλ. Both gray-level and colour images are considered.

Description: Throughout the papers referenced in this survey entry, Gevers et al. present a segmen-
tation strategy inspired in the work by Besl and Jain [14–16]. More precisely, they study different
tessellation grids and image features within a split-and-merge segmentation strategy on the basis
of the continuity of the image surface when a material change is not involved.
On the one hand, in [72], the authors compare two segmentation algorithms working over gray-level
images and six colour spaces: RGB, normalized RGB, HSI, L*a*b*, XYZ, normalized XYZ and
I1I2I3. While one algorithm is just a version of the well-known k-means clustering scheme (with k
known), the other algorithm falls within the split-and-merge class. Furthermore, the latter employs
the quadtree as the base structure for splitting the image. Two homogeneity criteria are used for
guiding the split-and-merge algorithm: one is based on the variance of the region considered and
the other one uses the fitting error resulting from approximating the image surface by low-order
bivariate polynomials. At the end of the paper, the authors conclude that segmentation results
based on colour information are better than those based on gray-level information, normalized
colour systems provide the best segmentation results, the split-and-merge algorithm outperforms
the one based on k-means and, finally, the variance-based homogeneity criterion works better for
normalized colour systems while the one based on low-order bivariate polynomials is adequate for
gray-level images and colour systems not factoring out intensity information, such as RGB, XYZ,
etc.
On the other hand, [73] focuses directly on the split-and-merge algorithm but using the incremental
Delaunay triangulation instead of quadtrees, because, according to the authors, adapts better to
the semantics of the image data. Gray-level images and colour images are considered. In the first
case, low-order bivariate polynomials are used for determining the homogeneity of the region under
consideration. In the case of colour images, the L*rg space is utilized, where L* is based on a scaling
of intensity, and r and g are normalized red and green, respectively; the homogeneity criterion in
this case is based on variance over every normalized colour channel, while L* is used when intensity
falls below a certain threshold. The image points for feeding the triangulation process come from
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pixels with the largest fitting errors, Canny edges, corners and the two end-points of lines found
over Canny edge maps.
Finally, with the experience gained with the previous algorithms, the authors propose in [74]
and [68] to use this strategy based on the image surface continuity just for gray-level images,
making use of the Delaunay triangulation and a homogeneity criterion based on the fitting error to
low-order bivariate polynomials. The algorithm mainly works as follows: in a first stage, the image
is partitioned in triangles until all the triangles are homogeneous, using Canny edges and corners
leading to the best new triangulation as new triangulation points; in a second stage, adjacent
triangles whose union is still homogeneous are merged until no more fusions are possible.
The results published for this last algorithm come from a set of gray-level synthetic images of
randomly placed geometric shapes over a background of quadratically varying intensity and a real
image of three homogeneously coloured objects on a homogeneously painted background.

3.3.4 PHOTOMETRIC INVARIANTS AND SPECIALIZED COLOUR SPACES

3.3.4.1 Image segmentation using normalized colour

Auhor(s): Glenn HEALEY [86–91]

Reference(s): [86] 1988, [87,88] 1989, [89] 1990, [90,91] 1992

Image formation model:

R(g, λ) =

{
MS(g)CS(λ) Metal

MS(g)CS(λ) + MB(g)CB(λ) Inhomogeneous Dielectric

where R(g, λ) is the light reflected for wavelength λ and photometric angles g, MS is the interface
geometrical factor, CS is the surface reflectance, MB is the body geometrical factor and CB is the
body reflectance.

Description: The work by Healey is based on normalized colour, using the L2 norm to normalize:

Ŝ =
S√

s2
0 + · · · + s2

N−1

,

where S = (s0, . . . , sN−1) denotes a measured sensor vector. The author emphasizes he does not
use the L1 norm (i.e. s0 + · · · + sN−1), which is indeed used by other researchers, because this
norm makes the difference between normalized colours dependent on the precise colours which are
compared not on how different they are.
Clusters corresponding to uniformly coloured objects are modelled as a single straight line or as a
combination of two intersecting straight lines, one for the body cluster and the other one for the
specular cluster. Besides, a multivariate normal distribution defined in normalized colour space is
associated to every material found in the scene.
The algorithm starts detecting edges for one of the bands of the colour image. In a second stage,
a region-splitting strategy is followed, which, using a quadtree decomposition, divides the image
in rectangular zones until every zone is free of edges. Next, a list of scene materials is created
by processing all rectangular zones in the following way: given a certain zone, a mean normalized
colour is computed for it and the probability of belonging to any of the currently found materials
is determined; if the largest probability exceeds a certain threshold T , the respective pixels are
assigned the label of the corresponding material; otherwise, a new material is created and added
to the materials list. This process continues until all the pixels of the image have been labelled,
although dark pixels (i.e. their colour is within the hyper-sphere of radius 4σN centered at the origin
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in sensor space, where σN is the standard deviation of the camera noise) are left unsegmented. In
the final stage, adjacent regions are merged if: (1) they intersect but no at the origin of the colour
space, and (2), along their common boundary, the intensities of one region are in all channels above
the intensities of the other region; that is to say, this pair of regions is interpreted as, perhaps a
part of, a dichromatic plane.
The author notices that the algorithm works better as more channels are considered, what can be
obtained by placing narrow filters in front of a monochrome camera.
Images of plastic and metallic objects are used in the experiments.

3.3.4.2 Segmentation of images using the reflectance ratio photometric invariant

Auhor(s): Shree NAYAR [174–178], Ruud BOLLE [174–178]

Reference(s): [174–177] 1993, [178] 1996

Image formation model:
I = seρR(s,v,n) ,

where I is the brightness value found in an image pixel, s is the spectral response of the sensor, e
is the spectral distribution of the incident light, ρ is the fraction of incident light that is reflected
in all directions by the surface, R represents the dependence on the geometry of illumination and
sensing, n is the surface normal of the considered scene point, s is the direction towards the light
source and v is the direction of the viewer.
Furthermore:
• white illumination: e(λ) = e, and
• a constant response of the sensor: s(λ) = s
are assumed.

Description: Although the goal of the authors is to find a photometric invariant for object recognition
purposes, in the process, a segmentation of the image is required, which is guided by the so-called
reflectance ratio. It is invariant to shading and illumination changes and is given by:

p(A,B) =
IA − IB

IA + IB
,

where IA and IB are the brightness values for nearby image points A and B. Though the image
formation model does not correspond to the output of a colour camera, p can be easily generalized
to RGB images computing p for every channel.
The algorithm consists of three stages: first, reflectance ratios are determined; second, a sequential
labeling segments the image into connected regions of uniform reflectance, where two neighbouring
pixels A and B are considered connected if |p(A,B)| < T ; finally, a reflectance ratio is computed for
each of the segmented regions as an average of the reflectance ratios computed along the boundary
of the region. Small regions caused by camera aliasing are discarded. Finally, the authors assume
the scene consists of smooth objects; otherwise, several regions are created for the same object,
which is the case of, for instance, a polyhedral object.
Several images involving objects of different materials are used in the experiments.

3.3.4.3 Segmentation and interpretation of images using multiple hypotheses of image formation

Auhor(s): Bruce MAXWELL [158–167], Steven SHAFER [160–167]

Reference(s): [160] 1993, [161,162], [163] 1995, [158,164,165] 1996, [166] 1997, [159] 1999, [167] 2000
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Image formation model:
C = mbCb + miCi ,

where C is the vector of camera responses for every colour channel, mb is the body geometrical
factor, Cb is the vector of body reflection, mi is the interface geometrical factor and Ci is the
vector of interface reflection.

Description: Throughout this series of papers, Maxwell and Shafer propose a general framework for
image segmentation, entering in fact and in a certain sense the domain of image interpretation.
No new physics-based fundamental techniques are introduced, but it is rather a framework which
uses previous knowledge to produce clever segmentations in which, for instance, different patches
of colour on the surface of the same object are interpreted as belonging to the same object, what
is traditionally left to higher levels of processing by almost all the physics-based segmentation
algorithms published so far. Because of this, the algorithm itself does not fall in any of the categories
proposed in section 3.3. However, it has been put in this section grouping algorithms making use
of photometric invariants because it makes use of some of them in one moment or another of the
process.
The algorithm mainly comprises four stages: first, an initial segmentation is computed making
use of normalized colour; second, every pair of adjacent regions is analyzed and hypotheses about
whether can be merged or not are generated, where those hypotheses result from the analysis of
the reflectance ratio, the coherence of the gradient direction and the smoothness of the intensity
profile along scanlines across adjacent regions; third, a graph of hypotheses is built, containing
interpretations about how the image could have been generated taking into account the evidences
provided by the operators examined in the second stage; finally, segmentations are extracted from
the graph after a clustering process in order to avoid the combinatorial explosion which would
result from the graph if all the possible combinations were explored.
Several images containing glossy and matte artificial objects of a certain complexity are used
throughout the papers but only for illustration purposes.

3.3.4.4 Colour edge detection in analog VLSI

Auhor(s): Frank PEREZ [227] and Christof KOCH [227]

Reference(s): [227] 1994

Image formation model:

C =

∫

λ

Ia(λ)ka(λ)SC(λ)τ(λ)ddλ +
cos(θ)

r + k

∫

λ

Ip(λ)kd(λ)SC(λ)τ(λ)ddλ

+
ks cosn(α)

r + k

∫

λ

Ip(λ)SC(λ)τ(λ)ddλ , for C = (R,G,B) ,

where C is the intensity value for a certain colour channel, Ia is the ambient intensity, ka is
the ambient reflectance, Ip is the intensity of a point light source, r is the distance from the
perspective viewpoint to the surface, k is a constant, kd is a diffuse reflection coefficient, ks is
a specular reflection coefficient, α is the angle between the perfect specular direction and the
viewing direction (Phong model), n is the roughness of the surface (Phong model), SC is the filter
transmittance for the particular colour channel C, τ(λ) is the transmittance per unit distance of
the transmitting medium, and d is the thickness of a transparent medium. (The integrals are taken
over the visible spectrum.)
Furthermore:
• the integrated white condition:

∫
λ

Ip(λ)SR(λ) dλ =
∫

λ
Ip(λ)SG(λ) dλ =

∫
λ

Ip(λ)SB(λ) dλ,
• proportionality between ambient and point source illumination: Ia(λ) = cIp(λ),
• a spectrally uniform transmission medium: τ(λ) = τ0, and
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• the neutral interface reflection (NIR) model: ks(λ) = ks

are assumed.

Description: With the aim of understanding the basis of colour segmentation in primate cortex for
imitating those structures in analog CMOS VLSI circuits, the authors choose hue for an edge
detector in accordance with electrophysiological studies that suggest that hue is computed at a
high level in the nervous system. From the different definitions of the HSI space available in the
vision literature, they select:

I =
R + G + B

3
, S = 1 − min{R,G,B}

I
, H = tan−1

√
3(G − B)

(R − G) + (R − B)

because of its straightforward implementation in hardware.
In the paper, it is proved that if the integrated white condition1 holds, hue is invariant to certain
types of highlights, shading and shadows, under the conditions expressed in the image formation
model, due to the additive/shift invariance2 property. It is also shown that the multiplicative/scale
invariance3 property of hue also allows invariance to transparencies, also under the conditions
indicated.
The edge maps are computed looking for zero-crossings of what they call the modulo Laplacian
operator applied to hue, which essentially takes into account the circular nature of hue. In order to
cope with the instabilities of hue in regions of low saturation or low intensity, the hue is smoothed
by means of a Markov Random Field-based operator. Furthermore, when designing the hue edge
detector in hardware, colour filters are selected so as to satisfy the integrated white condition.
The results published involve real images including specularities, shadows, inter-reflections, etc.
and different surface materials.

3.3.4.5 Colour edge detection in the HSV space

Auhor(s): Peter TSANG [284,285], W.H. TSANG [284,285]

Reference(s): [284] 1996, [285] 1997

Image formation model:

CL = mdCd + msCs + Ca ,

where CL is the vector of camera responses for every colour channel, md is the diffuse scaling
factor, Cd is the vector of diffuse reflection, ms is the specular scaling factor, and Ca is the
ambient illumination vector.
Furthermore:
• the neutral interface reflection (NIR) model: ks(λ) = ks, and
• white illumination, both directional and ambient,
are assumed.

Description: This paper presents an edge detection algorithm using the Hue-Saturation-Value (HSV)
colour model on the basis of the invariance properties of the hue component to shading, specularities
and shadows, under the conditions stated in the image formation model. First, the algorithm
calculates an index I as the product of the V and S components. Second, if the index I is larger
than a threshold U , then the hue gradient is determined for this pixel, while if the index is below

1 Under white illumination (Ip(λ) = Ip) the integrated white condition can be true if colour filters are chosen
so as to satisfy

∫
λ

SR(λ)dλ =
∫

λ
SG(λ)dλ =

∫
λ

SB(λ)dλ.
2 H(R, G, B) = H(R + β, G + β, B + β)
3 H(R, G, B) = H(αR, αG, αB)
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a threshold L, the gradient is computed over the V component; otherwise, if I is between U and
L, the largest of both gradients is selected.
Results for an only image are provided in the paper, but only the resulting gradient image is given.
It is compared with less sophisticated approaches.

3.3.4.6 Region segmentation by photometric colour invariant

Auhor(s): Theo GEVERS [68,75,76], Arnold SMEULDERS [75,76], Harro STOKMAN [76]

Reference(s): [75] 1997, [76] 1998, [68] 2002

Image formation model:

C = mb(n, s)

∫

λ

fc(λ)e(λ)cb(λ)dλ + ms(n, s,v)

∫

λ

fc(λ)e(λ)cs(λ)dλ , for C ∈ (R,G,B) ,

where C is the intensity value for a certain colour channel, mb is the body geometrical factor
depending on surface normal n and direction towards the light source s, fc is the colour filter
transmittance, e is the incident light, cb is the body reflectance, ms is the interface geometrical
factor depending on n, s and the direction of the viewer v, and cs is the interface reflectance. (The
integrals are taken over the visible spectrum.)
Furthermore:
• the integrated white condition:

∫
λ

fR(λ)e(λ) dλ =
∫

λ
fG(λ)e(λ) dλ =

∫
λ

fB(λ)e(λ) dλ,
• white illumination: e(λ) = e, and
• the NIR model: cs(λ) = cs

are assumed.

Description: Throughout a series of papers, the authors experiment with several colour spaces and
photometric invariants, as well as with different algorithms, including k-means (with k known) and
split-and-merge, for different tessellation grids.
In [75], the Delaunay triangulation is used within a split-and-merge framework over the projection
of RGB values over a plane passing through the (255,0,0), (0,255,0) and (0,0,255) RGB points and
named kl-plane by the authors. Under white illumination and if the integrated white condition
holds, pixels of uniformly coloured objects lie on a straight line over the kl-plane. The fitting error
to a straight line is thus used in the homogeneity criterion.
The work of [76], on the other hand, considers different colour spaces (RGB, XYZ, I1I2I3, nor-
malized RGB, U*V*W*, L*a*b* and HSI) and compares a k-means-based clustering scheme with
a split-and-merge strategy based on quadtrees. The sum in quadrature of region colour channel
variances is used in the homogeneity criterion in the case of photometric invariants, while, for the
case of RGB, the knowledge about the clusters structure in colour space is taken into account.
Finally, [68] proposes a split-and-merge algorithm supported by a Delaunay triangulation tessella-
tion grid and the photometric invariants c1c2c3 and l1l2l3 defined as follows:

c1(R,G,B) = tan−1
(

R
G

)
l1(R,G,B) = |R−G|

|R−G|+|B−R|+|G−B|
c2(R,G,B) = tan−1

(
R
B

)
l2(R,G,B) = |R−B|

|R−G|+|B−R|+|G−B|
c3(R,G,B) = tan−1

(
G
B

)
l3(R,G,B) = |G−B|

|R−G|+|B−R|+|G−B|

where the former achieves invariance to shading and the latter also to specularities, under the
conditions stated in the image formation model.
The algorithm mainly works as follows: in a first stage, the image is partitioned in triangles until all
the triangles are homogeneous, using Canny edges and corners leading to the best new triangulation
as new triangulation points; in a second stage, adjacent triangles whose union is still homogeneous
are merged until no more fusions are possible.
The results published for this last algorithm come from an only image of plastic objects over a
background divided in four uniformly coloured squares.
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3.3.4.7 Colour invariant snakes

Auhor(s): Theo GEVERS [70,71], Sennay GHEBREAB [71] and Arnold SMEULDERS [71]

Reference(s): [71] 1998, [70] 2004

Image formation model:

C = mb(n, s)

∫

λ

fc(λ)e(λ)cb(λ)dλ + ms(n, s,v)

∫

λ

fc(λ)e(λ)cs(λ)dλ , for C ∈ (R,G,B) ,

where C is the intensity value for a certain colour channel, mb is the body geometrical factor
depending on surface normal n and direction towards the light source s, fc is the colour filter
transmittance, e is the incident light, cb is the body reflectance, ms is the interface geometrical
factor depending on n, s and the direction of the viewer v, and cs is the interface reflectance. (The
integrals are taken over the visible spectrum.)
Furthermore:
• the integrated white condition:

∫
λ

fR(λ)e(λ) dλ =
∫

λ
fG(λ)e(λ) dλ =

∫
λ

fB(λ)e(λ) dλ,
• white illumination: e(λ) = e, and
• the NIR model: cs(λ) = cs

are assumed.

Description: This time Gevers and colleagues present an active contour supervised segmentation
strategy guided by photometric invariants instead of just intensity. Normalized RGB and the
typical formulation for hue are used as invariants against, respectively, shading only, and both
shading and specularities (under the conditions stated in the image formation model), in [76].
Colour ratios

m1(Rx1
, Rx2

, Gx1
, Gx2

) =
Rx1

Gx2

Rx2
Gx1

,

m2(Rx1
, Rx2

, Bx1
, Bx2

) =
Rx1

Bx2

Rx2
Bx1

,

m3(Gx1
, Gx2

, Bx1
, Bx2

) =
Gx1

Bx2

Gx2
Bx1

,

where x1 and x2 are image locations, and polar coordinates

θ1 = tan−1

(
R

B

)
, θ2 = tan−1

(
G

B

)

are proposed in [70] against just shading (again, under the conditions stated in the image formation
model). Intensity uncertainties are incorporated in [70] to compute adaptive thresholds. They are
determined by computing the variance of homogeneously coloured surface patches in an image
under controlled imaging conditions.
Images of simple plastic objects over uniform background are used in the experiments with static
images, while a human figure over a slightly textured background is used in the video sequences.

3.3.4.8 Photometric invariant region detection in multi-spectral images

Auhor(s): Harro STOKMAN [80,262–264], Theo GEVERS [80,263,264]

Reference(s): [263,264] 1999, [262] 2000, [80] 2003
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Image formation model:

hi = mb(n, s)

∫

λ

fi(λ)E(λ)cb(λ)dλ + ms(n, s,v)

∫

λ

fi(λ)E(λ)cs(λ)dλ ,

where hi is the camera output for filter fi with central wavelength i, mb is the body geometrical
factor depending on surface normal n and direction towards the light source s, E is the incident
light, cb is the body reflectance, ms is the interface geometrical factor depending on n, s and the
direction of the viewer v, and cs is the interface reflectance.
Furthermore:
• the integrated white condition:

∫
λ

f1(λ)dλ =
∫

λ
f2(λ)dλ = · · · =

∫
λ

fN (λ)dλ,
• the NIR model: cs(λ) = cs, and
• narrow-band camera filters
are assumed.

Description: An adaptation of the well-known k-means clustering scheme for photometric invariants
and multi-spectral images is proposed in [80, 264]. Multi-spectral images are captured by means
of a spectrophotometer by taking samples at different wavelengths closely spaced. The invariance
is achieved through chromaticity polar angles and by means of hue polar angles. The former
is invariant to shading while the latter is invariant to both shading and glossiness, under the
conditions stated in the image formation model. Given a sample c = (c(λ1), c(λ2), . . . , c(λN )) the
chromaticity polar angles are defined as

θc(λi) = tan−1

(
c(λi)

c(λN )

)
,

while the expression for hue polar angles is

θh = α [c(λi) − (1 − ρs), φ(i,N)] ,

ρs = 1 − min{c(λ1), c(λ2), . . . , c(λN )} ,

φ(i,N) =
i − 1

N − 1
· 4

3
π ,

α(wi, θi) = tan−1

( ∑N
i=1 wi sin(θi)∑N
i=1 wi cos(θi)

)
,

where the typical formulation for hue

H = tan−1

( √
3(G − B)

(R − G) + (R − B)

)

can be attained by assigning indexes i = 0, 1 and 2 to, respectively, the red, green and blue colour
channels.
Finally, robust clustering is achieved by means of computing uncertainties of hyper-spectral colour
samples, propagating them through the invariants and incorporating them in the k-means algorithm
as sample weights when computing cluster means. The uncertainties come from a camera noise
model including camera gain, shot noise and dark current; noise model parameters are estimated
by means of uniformly coloured cards.
The results published involve an only image of plastic objects over a background divided in four
uniformly coloured squares.

3.3.4.9 Adaptive detection and classification of colour edges

Auhor(s): Harro STOKMAN [77–79,262,265,266], Theo GEVERS [69,77–79,265]
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Reference(s): [77] 1999, [78,262,265,266] 2000, [69,79] 2003

Image formation model:

C = mb(n, s)

∫

λ

fc(λ)e(λ)cb(λ)dλ + ms(n, s,v)

∫

λ

fc(λ)e(λ)cs(λ)dλ , for C ∈ (R,G,B) ,

where C is the intensity value for a certain colour channel, mb is the body geometrical factor
depending on surface normal n and direction towards the light source s, fc is the colour filter
transmittance, e is the incident light, cb is the body reflectance, ms is the interface geometrical
factor depending on n, s and the direction of the viewer v, and cs is the interface reflectance. (The
integrals are taken over the visible spectrum.)
Furthermore:
• the integrated white condition:

∫
λ

fR(λ)e(λ) dλ =
∫

λ
fG(λ)e(λ) dλ =

∫
λ

fB(λ)e(λ) dλ,
• white illumination: e(λ) = e, and
• the NIR model: cs(λ) = cs

are assumed.

Description: In this work, Stokman and Gevers study the detection and classification of colour edges
into shadow-geometry, highlights or material transitions. To this end, the following colour spaces
are utilized in the different papers:
• RGB, in all papers,
• c1c2c3 and l1l2l3, in [69,77,78], defined as:

c1(R,G,B) = tan−1
(

R
G

)
l1(R,G,B) = |R−G|

|R−G|+|B−R|+|G−B|
c2(R,G,B) = tan−1

(
R
B

)
l2(R,G,B) = |R−B|

|R−G|+|B−R|+|G−B|
c3(R,G,B) = tan−1

(
G
B

)
l3(R,G,B) = |G−B|

|R−G|+|B−R|+|G−B|
where the former is invariant to shading and the latter is invariant to shading and specularities
(under the conditions stated in the image formation model),

• normalized colours r and g and opponent colours o and p, in [262]:
r(R,G,B) = R

R+G+B o(R,G,B) = R−G
2

g(R,G,B) = G
R+G+B p(R,G,B) = B−(R+G)/2

2

where, again, the former is invariant to shading and the latter is invariant to shading and
specularities (under the conditions stated in the image formation model), and

• c1c2 and o1o2, in [79]:
c1(R,G,B) = tan−1

(
R
B

)
o1(R,G,B) = R−G

2

c2(R,G,B) = tan−1
(

G
B

)
o2(R,G,B) = B−(R+G)/2

2
where again the former is invariant to shading and the latter is invariant to shading and spec-
ularities (under the conditions stated in the image formation model).

Finally, adaptive detection is achieved by means of computing intensity uncertainties, propagating
them through the invariants and incorporating them in the edge detection algorithm. The uncer-
tainties come from a camera noise model including camera gain, shot noise and dark current. Noise
model parameters are estimated by means of uniformly coloured cards.
The results published involve images of plastic objects over a uniform background.

3.3.4.10 A scale-space approach to colour invariance

Auhor(s): Jan-Mark GEUSEBROEK [61–67], Arnold SMEULDERS [62–67], Anuj DEV [62, 64, 65],
Rein van den BOOMGARD [62–67], Hugo GEERTS [63–65], Frans CORNELISSEN [64,65]

Reference(s): [64, 65] 1999, [61,62,66] 2000, [63,67] 2001

Image formation model:

E(λ,x) = e(λ,x)
(
1 − ρf (x)2

)
R∞(λ,x) + e(λ,x)ρf (x) ,
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where x denotes the position at the imaging plane, e(λ,x) is the illumination spectrum, ρf (x) is
the Fresnel reflectance, R∞(λ,x) is the material reflectivity and E(λ,x) is the reflected spectrum
in the viewing direction.
Furthermore:
• white illumination: e(λ,x) = e(x), and
• the NIR model (ρf does not depend on wavelength)
are assumed.

Description: On the basis of the Kubelka-Munk model of light reflection for coloured bodies [113],
the authors of this work develop a set of invariants for different imaging conditions:
(1)

Hλmxn =
∂m+n

∂λm∂xn

{
tan−1

(
Eλ

Eλλ

)}
,m, n ≥ 0 ,

is invariant to shading and specularities under white but not necessarily uniform illumination;
(2)

Cλmxn =
∂n

∂xn

{
Eλm

E

}
,m ≥ 1, n ≥ 0 ,

is invariant to shading under white but not necessarily uniform illumination;
(3)

Wλmxn =
Eλmxn

E
,m ≥ 0, n ≥ 1 ,

is invariant to shading under white but not necessarily uniform illumination for planar objects;
and

(4)

Nλmxn =
∂m+n−2

∂λm−1∂xn−1

{
EλxE − EλEx

E2

}
,m ≥ 1, n ≥ 1 ,

is invariant to shading under a single not necessarily white illumination spectrum.
Derivatives in the spatio-spectral domain are achieved within the Gaussian colour model of [62], by
which, in particular, expressions for Eλ and Eλλ are derived as convolution with, respectively, first-
and second-order derivatives of a Gaussian at spectral scale σλ positioned at λ0. The relationship
between E, Eλ and Eλλ and the RGB colour space is also determined as well as a generalization
to two dimensions [63].
Results of edge detection and classification are given for an only image of plastic objects over a
background divided in four uniformly coloured squares.

3.3.4.11 Colour edge detection by photometric quasi-invariants

Auhor(s): Joost WEIJER [291,292], Theo GEVERS [291,292], Jan-Mark GEUSEBROEK [291,292]

Reference(s): [291] 2003, [292] 2005

Image formation model:
F = e(mbĈb + miĈi) ,

where F is a vector containing the camera output for all colour channels, e is the incident light,
mb is the body geometrical factor, Ĉb is the composite body reflectance vector, mi is the interface
geometrical factor, and Ĉi is the composite interface reflectance vector.
Furthermore:
• the NIR model: Ĉi = 1√

3
(1, 1, 1), and

• white illumination
are assumed.
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Description: An edge detection framework for colour images is proposed in these two papers. This
framework main feature resides in a new class of image derivatives which the authors refer to as
photometric quasi-invariants:
• Sc

x = Fx − Sx with Sx = (Fx · F̂ )F̂ is quasi-invariant to shadows and shading,

• Oc
x = Fx − Ox with Ox = (Fx · Ĉi)Ĉi is quasi-invariant to specularities, and

• Hc
x = Fx − Hx with Hx = (Fx · B̂)B̂ and B = F̂ × Ĉi is quasi-invariant to shadows, shading

and specularities,
where ̂ denotes a unit vector, · is the dot-product and × is the cross-product.
These quasi-invariants are not invariant with respect to a photometric variable. However, they
share the property with normal invariants that they are insensitive for certain edges, e.g. shadow
or specular edges (under the conditions stated in the image formation model). Besides, they have
better discriminative power than the full invariants. Furthermore, they do not have the inherent
instabilities of full photometric invariants. Despite not achieving total invariance, they are suited
to applications such as edge detection and classification, among others.

3.4 Summary and Conclusions

Table 3.1 summarizes most of the information given in section 3.3. In the table, the different columns
have the following meanings:

• algorithm refers to the algorithm, which is referenced by the number of survey entry;
• year(s) is for the year or interval of years of the related publications;
• GL and CO indicate if the algorithm is suitable for, respectively, gray-level and colour images;
• A, B, I, S and IR refer to the tolerance of the algorithm against, respectively, ambient illumination,

body reflection, interface reflection, shadows and inter-reflections;
• WI, NIR and IWC indicate if the algorithm assumes, respectively, white illumination, the NIR

model or the integrated white condition;
• output refers to whether the algorithm generates a segmentation (IS) or an edge map (EM);
• GA is for the type of general approach: pixel-based (pixel), region-based (region) or edge-based

(edge);
• PB indicates the class of the algorithm according to the classification discussed for physics-based al-

gorithms at the beginning of section 3.3: reflectance-estimation-based (reflectance), cluster-analysis-
based (cluster), continuity-of-the-image-surface-based (continuity) and photometric-invariant-based
(invariant); and, finally,

• more ... provides relevant information for the algorithm which has not been highlighted throughout
the previous items.

Several observations can be made from the general information given in the aforementioned table
and from the particular pieces of work surveyed:

About the general approach and the type of image considered ...
– Most work on physics-based segmentation has been devoted to photometric invariance. Next

category in number of approaches is cluster analysis.
– Almost all the algorithms assume colour images. Among the algorithms surveyed, those that

work over gray-level images also tolerate colour images (survey entries 3.3.3.1 and 3.3.4.2) or
can be easily adapted (survey entries 3.3.1.1 and 3.3.1.2). It is of particular relevance the fact
that algorithms working only with colour images can miss boundaries among certain pairs of
objects, depending on the relationship between their reflectances. This is particularly true of
the use of photometric invariants, which can hide some reflectance transitions because of their
specific formulation. For instance, the typical formulation for hue used in most algorithms:

H = tan−1

( √
3(G − B)

(R − G) + (R − B)

)
,
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Table 3.1. Summary of physics-based segmentation approaches.

algorithm year(s) GL CO A B I S IR WI NIR IWC output GA PB more ...

3.3.1.1 1983-89 X X IS pixel reflectance non-coplanar point triplets are required

3.3.1.2 1984-89 X X IS pixel reflectance umbilical points are required

3.3.2.1 1987-93 X X X X IS region cluster region growing

3.3.2.2 1989-96 X X X X X X IS pixel cluster illuminant colour required

3.3.2.3 1996 X X X X IS region cluster active contours

3.3.2.4 1998-99 X X X IS pixel cluster robust statistics

3.3.2.5 1999 X X X IS pixel cluster semi-supervised

3.3.2.6 2001 X X X X IS pixel cluster illuminant colour required

3.3.2.7 2003 X X X X IS pixel cluster illuminant colour required

3.3.3.1 1991-02 X X X X X IS region continuity Delaunay triangulation tessellation grid;
split-and-merge

3.3.4.1 1988-92 X X X IS region invariant metals and dielectrics; quadtree; split-and-
merge

3.3.4.2 1993-96 X X X X IS region invariant constant response of sensor required

3.3.4.3 1993-00 X X X IS region invariant image interpretation as an added value

3.3.4.4 1994 X X X X X X EM edge invariant ambient illumination proportional to direc-
tional illumination required

3.3.4.5 1996-97 X X X X X X EM edge invariant very simple algorithm

3.3.4.6 1997-02 X X X X X X IS region invariant Delaunay triangulation tessellation grid;
split-and-merge

3.3.4.7 1998-04 X X X X X X IS region invariant semi-supervised; active contours; propaga-
tion of intensity uncertainties

3.3.4.8 1999-03 X X X X X IS region invariant propagation of intensity uncertainties

3.3.4.9 1999-03 X X X X X X EM edge invariant propagation of intensity uncertainties

3.3.4.10 1999-01 X X X X X EM edge invariant scale-space invariance

3.3.4.11 2003-05 X X X X X EM edge invariant introduction of quasi-invariants
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is invariant to shading and specularities if the NIR model and the integrated white condition
are assumed because hue transforms to:

H = tan−1

( √
3((Ldρb)

G − (Ldρb)
B)

2(Ldρb)R − (Ldρb)G − (Ldρb)B

)
, (3.1)

when R, G and B are replaced by the corresponding physics-based expressions. However, if two
adjacent objects happen to have body reflectances (ρR

b1, ρ
G
b1, ρ

B
b1) and (ρR

b2, ρ
G
b2, ρ

B
b2) such that:

√
3((Ldρb1)

G − (Ldρb1)
B)

2(Ldρb1)R − (Ldρb1)G − (Ldρb1)B
=

√
3((Ldρb2)

G − (Ldρb2)
B)

2(Ldρb2)R − (Ldρb2)G − (Ldρb2)B
,

then they cannot be distinguished only by hue.

About the model of image formation ...
– Most algorithms tolerate body and specular reflection. Only some of them restrict to exclusively

body reflection (survey entries 3.3.1.1, 3.3.1.2 and 3.3.4.2).
– Very few algorithms consider ambient illumination. Only 3.3.3.1, 3.3.4.4 and 3.3.4.5 include it

in the image formation model. This fact is of particular importance because most photometric
invariants proposed so far leave their invariance condition as soon as ambient illumination is
introduced. This is the case of, for instance, the typical formulation of hue, which when R, G
and B are replaced by the corresponding physics-based expressions transforms to:

tan−1

( √
3(G − B)

(R − G) + (R − B)

)
=

tan−1

( √
3

(
(Laρa)G − (Laρa)B + mb

(
(Ldρb)

G − (Ldρb)
B

))

2(Laρa)R − (Laρa)G − (Laρa)B + mb (2(Ldρb)R − (Ldρb)G − (Ldρb)B)

)
, (3.2)

which is not invariant to shading, although the NIR model and the integrated white condi-
tion hold. Most of these photometric invariants tolerate ambient illumination if a certain SPD
is assumed for it, such as, for example, white illumination, which is what the papers of sur-
vey entries 3.3.3.1, 3.3.4.4 and 3.3.4.5 assume. Under those circumstances, La = kLd and, if
the NIR model is also assumed, hue above turns again invariant to shading and specularities
(equation 3.1).
The following expression involving two RGB triplets, (R,G,B) and (R′, G′, B′), corresponding
to the same material, and their difference (∆R,∆G,∆B) = (R−R′, G−G′, B−B′), do achieve
the desired invariance:

tan−1

( √
3(∆G − ∆B)

(∆R − ∆G) + (∆R − ∆B)

)
=

tan−1

( √
3(mb − m′

b)
(
(Ldρb)

G − (Ldρb)
B

)

(mb − m′
b) (2(Ldρb)R − (Ldρb)G − (Ldρb)B)

)
=

tan−1

( √
3

(
(Ldρb)

G − (Ldρb)
B

)

(2(Ldρb)R − (Ldρb)G − (Ldρb)B)

)
. (3.3)

This invariant requires, however, to be able to relate pairs of RGB triplets of the same material.
Observe that intensity derivatives would play the same role as ∆C,C ∈ {R,G,B}, in the interior
of uniform reflectance regions, but problems would arise at material boundaries.
Other algorithms not making use of photometric invariants are also affected by the incorporation
of ambient illumination. This is the case of algorithms based on the analysis of clusters in colour
space if they assume the body cluster is a line passing through the origin of the colour space
(this is particularly true for survey entries 3.3.2.1 and 3.3.2.6). As was shown in figure 2.6, under
ambient illumination, the dichromatic planes do not necessarily contain colour (0,0,0).
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– Shadows and inter-reflections are rarely considered. It is true that there exist ad-hoc approaches
to deal with them, mainly regarding shadows [47,48,58–60,110,111,245,246], but they are not
integrated in any of the algorithms surveyed. At most, their tolerance is discussed in some of
the publications included in this survey (survey entries 3.3.2.2 and 3.3.4.6).

– It is common practice to assume the NIR model as well as to impose some constraints about
scene illumination. This is particularly true for the approaches based on photometric invariants.
Although the NIR model is generally accepted within the vision community, white illumination
is considered a quite idealized condition of incident light.

About the uncertainty of the irradiance measurement ...
– Most algorithms does not take into account the way how the imaging sensing device works.

Uncertainties of the irradiance measurements provided by the camera are used only by few
algorithms. However, those uncertainties are computed as the intensity variance over uniformly
coloured plane cards (survey entry 3.3.4.7) or assuming camera noise models covering only part
of the noise sources enumerated in section 2.4.4 (survey entries 3.3.4.8 and 3.3.4.9). Algorithms
that take into account this information can, in particular, set in an adaptive way, the different
thresholds that inevitably any segmentation algorithm incorporates.

About the experiments ...
– Papers published up until now contain very little experimentation on the proposed physics-based

algorithms. Experimental results sections are mainly devoted to illustrate the algorithm pro-
posed. Among all the algorithms surveyed, only the one presented in survey entry 3.3.3.1 was
tested against noise and the corresponding results provided in a publication. Furthermore, none
of the publications surveyed in this chapter presents a comparison with other algorithms, nor
with physics-based, nor with non-physics-based.

– Furthermore, test images normally correspond to quite simple scenes, mostly containing plastic
objects.

Summing up, the following conclusions can be drawn from the previous considerations, which, on
the other hand, set some lines of research: (1) segmentation algorithms should ensure all the reflectance
transitions can be detected; (2) a certain improvement on the models of image formation considered by
the segmentation algorithms is needed in order to cope with more realistic situations; (3) the quality
of the measurements provided by vision cameras should be taken into account, and this quality should
be computed incorporating a noise model as more reliable as possible; and (4) more effort should
be devoted to determining the performance of physics-based segmentation algorithms, both regarding
their validity in front of a varied set of test images and in comparison with other algorithms.
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General Framework for Image Segmentation and Edge Detection

Images produced by imaging sensors are the result of sensing the electromagnetic radiation coming
from the scene in front of the camera. Such electromagnetic radiation carries information about scene
objects as a result of their interaction with scene lighting. Being interested in identifying groups of
pixels corresponding to the same object, it seems reasonable that the analysis of the measurements
provided by the camera is performed in the light of the physics-based models of the formation of the
image, and to process the image accordingly. To this end, this chapter focuses on the development of
a general framework for image segmentation and edge detection on the basis of physics-based image
formation models.

In the following, section 4.1 introduces the axis notation to be used whenever geometrical relation-
ships between scene elements are to be used, while section 4.2 succinctly reviews the physical processes
involved, already studied in chapter 2, and develops a comprehensive expression of image formation.
As already mentioned in chapter 2, neither attenuating propagation media, emissivity of surfaces or
transmission processes will be incorporated in the model. The whole model is analyzed then to discuss
its suitability as a starting point for image segmentation and edge detection in section 4.3. Finally,
section 4.4 considers the evaluation of the performance of segmentation and edge detection algorithms.
While standard measures are suggested for evaluating the output of edge detectors, a new strategy is
proposed for assessing the performance of segmentation algorithms.

4.1 Axis Notation

The viewer-oriented co-ordinate system depicted in figure 4.1 will be assumed from now on whenever
it is necessary to make use of geometrical relationships between the different elements of the imaging
scenario, namely light sources, scene objects and camera. As a consequence, surface normal vectors
pointing from the scene towards the camera have negative z components, as well as vectors expressing
the direction towards a light source. Besides, the origin of the co-ordinate frame lies at the center of
projection and the image plane is put before the center of projection, at z = f , being f the focal
distance.

4.2 Expanded Model of Image Formation (without noise)

As it has been discussed in chapter 2, in general, radiance emitted at any scene point comes from
reflection from either non-directional and directional light sources. The case of non-directional light
corresponds to ambient illumination and represents light with no preferred orientation that is the result
of multiple interreflections on the walls and other scene objects, in indoor environments, or the result
of multiple difractions in the atmosphere, in the outdoor case. On the other hand, the scene can be
illuminated by several directional light sources, and for every one either body and interface reflection
processes must be considered. Following the approximation by Hougen and Ahuja [105], the light source
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Fig. 4.1. Axis notation.

distribution may be approximated by a set of ls distinct individual directional light sources located
at infinity and characterized by their own colour and radiance, and a vector defining their individual
orientations. Ignoring interreflections and camera noise, and decomposing the light arriving at image
cell (i, j) into the three reflection components of the DRM, ambient, body and interface, equation 4.1
results from the combination of equations 2.31, 2.32 and 2.39:

Dc(i, j) =

[
qc
0

∫

Λ

La(λ)ρa(i, j;λ)τ c(λ)s(λ)dλ

]
(ambient term)

+

ls∑

k=1

mb,k(i, j)

[
qc
0

∫

Λ

Ld,k(λ)ρb(i, j;λ)τ c(λ)s(λ)dλ

]
(body terms)

+

ls∑

k=1

mi,k(i, j)

[
qc
0

∫

Λ

Ld,k(λ)ρi(i, j;λ)τ c(λ)s(λ)dλ

]
(interface terms) , (4.1)

where:

• qc
0 is a scaling factor including Qc

0 (equation 2.32) and (π/4) (d/f)
2

(equation 2.38).
• La(λ) is the ambient illumination radiance, while Ld,k(λ) is the radiance corresponding to the

directional light source k.
• mb,k(i, j) is the geometrical factor of the body reflection corresponding to image cell (i, j) for the

directional light source k. From a theoretical point of view, for every scene point p projecting onto
image cell (i, j) there is a possibly different mb value, so that mb depends in fact on p (by way
of illustration, see figure 2.8). However, after equation 2.39, L(p;λ) was assumed constant for all
the scene points p optically reachable from image cell (i, j). Accordingly, mb,k(p) turns out to be
constant as well, and equal to mb,k(i, j). Using the Lambert’s Cosine Law to give form to mb:

mb,k(i, j) = cos θk(i, j) = n(i, j) · sk(i, j) , (4.2)

where θk(i, j) is the angle between the outward unit surface normal corresponding to image cell
(i, j), n(i, j), and the unit direction towards the directional light source k, sk(i, j). The meanings
of θk, n and sk are clearly related to the previous considerations about mb.
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• mi,k(i, j) is the geometrical factor of the interface reflection corresponding to image cell (i, j) for
the directional light source k. The above sort of observations for mb would also apply here. As for
the form of mi,k, the often-quoted Torrance-Sparrow model is taken, so that:

mi,k(i, j) =
Dk(i, j;m)Gk(i, j)F

(1)
k (i, j)

cos θr(i, j)
=

Dk(i, j;m)Gk(i, j)F
(1)
k (i, j)

n(i, j) · v(i, j)
, (4.3)

where: D is the probability distribution function for the orientation of micro-facet normals, depen-
dent on the surface roughness parameter m; G is the geometrical attenuation factor that accounts
for the shadowing and masking of surface micro-facets by adjacent facets; and F (1) comes from
the analysis of Healey in [88], where the Fresnel reflectance term of the Torrance-Sparrow model
(equation 2.22) is determined to be quite well approximable by the product of two terms F (1) and
F (2), the former depending exclusively on geometry and the latter exclusively on wavelength.

• ρb(i, j;λ) is the body reflectance for image cell (i, j). The same considerations made above regarding
the constancy of L(p;λ) also apply for this and the other reflectances.

• ρi(i, j;λ) is the interface reflectance at image cell (i, j). It is generally defined through the Fresnel
reflectance, so that, following Healey [88], ρi = F (2).

• ρa(i, j;λ) is the ambient illumination reflectance corresponding to image cell (i, j). ρa is assumed
to be a linear combination of ρb and ρi.

A more compact form of equation 4.1 is given as follows:

Dc(i, j) =

Dc
a(i,j)︷ ︸︸ ︷

Cc
a(i, j) +

ls∑

k=1

Dc
b,k(i,j)

︷ ︸︸ ︷
mb,k(i, j)Cc

b,k(i, j) +
ls∑

k=1

Dc
i,k(i,j)

︷ ︸︸ ︷
mi,k(i, j)Cc

i,k(i, j) , (4.4)

with

Cc
a(i, j) = (Laρa(i, j))

c
= qc

0

∫

Λ

La(λ)ρa(i, j;λ)τ c(λ)s(λ)dλ , (4.4a)

Cc
b,k(i, j) = (Ld,kρb(i, j))

c
= qc

0

∫

Λ

Ld,k(λ)ρb(i, j;λ)τ c(λ)s(λ)dλ , and (4.4b)

Cc
i,k(i, j) = (Ld,kρi(i, j))

c
= qc

0

∫

Λ

Ld,k(λ)ρi(i, j;λ)τ c(λ)s(λ)dλ . (4.4c)

where Cc
a, Cc

b and Cc
i are, respectively, the so-called ambient , body and interface composite reflectances,

representing the joint contribution of lighting and material reflectance to the corresponding reflection
component. Observe that they have embedded, among others, the integration time T (equation 2.40)
and factor (π/4)(d/f)2 (equation 2.39), so that, for the same object, variations in exposure time and
lens aperture will yield different values for those quantities.

For instance, in an RGB colour camera, the model of equation 4.4 takes the form of equation 4.5:



R(i, j)
G(i, j)
B(i, j)


 =




Ra(i, j)
Ga(i, j)
Ba(i, j)


 +

ls∑

k=1

mb,k(i, j)




Rb,k(i, j)
Gb,k(i, j)
Bb,k(i, j)


 +

ls∑

k=1

mi,k(i, j)




Ri,k(i, j)
Gi,k(i, j)
Bi,k(i, j)


 , (4.5)

where (Ra, Ga, Ba), (Rb,k, Gb,k, Bb,k) and (Ri,k, Gi,k, Bi,k) are, respectively, the ambient, body and
interface colours of the corresponding surface material when illuminated by light source k.

Observe now that, in case the different light sources have all the same or similar spectral composition
(this could be the case of, for instance, an office), equation 4.4 can be simplified to equation 4.6:

Dc(i, j) =

Dc
a(i,j)︷ ︸︸ ︷

Cc
a(i, j) +

Dc
b(i,j)︷ ︸︸ ︷

mb(i, j)C
c
b (i, j) +

Dc
i (i,j)︷ ︸︸ ︷

mi(i, j)C
c
i (i, j) , (4.6)

where, now, mb =
∑ls

k=1 mb,k S 1 and mi =
∑ls

k=1 mi,k S 1.
As a final consideration and as a proof of validity of the previous models, it would be important

to note that, in the research area of realistic computer graphics, the often used ray tracing rendering
techniques implement subsets of equation 4.1 [83, p. 82].
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Table 4.1. Scene attributes encoded in the image formation model

Class Attribute Symbols involved

object properties complex refraction index (n − K0i)(λ)
surface reflectances ρa(λ), ρb(λ), ρi(λ)
surface roughness m
object local shape n

light source properties directional light source(s) radiance
distribution

sk, Ld,k(λ)

ambient illumination radiance La(λ)

camera properties colour filter(s) transmittance τc(λ)
camera spectral responsivity s(λ)

4.3 Use of a Physics-Based Model for Segmentation and Edge Detection

According to equation 4.1, it is clear that the intensity levels present in the cells of an image encode
the values of different attributes of the elements of the scene. Depending whether a method can be
devised to recover such pieces of information, it will be possible to rebuild the scene for the general
model and elaborate an accurate description of it or not.

Table 4.1 puts together the relevant attributes of a scene whose particular values could, from a
theoretical point of view, be recovered through the use of equation 4.1, just because of the fact of
appearing there; obviously, some of them could be harder if not impossible to estimate, at least in
isolation from the rest, by only analyzing one image. Depending on the vision task at hand, one would
be interested in one or other attribute.

In the particular tasks of edge detection and image segmentation, the relevant attributes would be
the ones which could be used to tell the different scene objects apart; that is to say, the scene attributes
which were in turn object properties. Let us revise them one by one following the order of table 4.1:

• Complex refraction index. As it was indicated in chapter 2, the complex refraction index n − K0i
is related to the object optical properties through the electrical permitivity ǫ, the magnetic perme-
ability µ and the conductivity σ. The refraction index is used to compute the Fresnel reflectance
and it appears only in the interface reflection term, so that using equation 4.1 the complex refrac-
tion index could only be estimated for glossy objects. Furthermore, it has been proved that the
Fresnel reflectance tends to be constant for many materials, which jeopardizes its discriminating
power [144,280].

• Surface reflectances. Among the different surface reflectances distinguished in the model, the body
reflectance ρb is the one that determines what is usually considered as the perceptual colour of the
object (i.e. when one says an object is reddish it is because ρb(λ) takes a certain shape). Interface
reflectance ρi, on the other hand, contributes to the colour of highlights, and therefore to the
colour of, most times in most scenes, small areas of the surface of the object. The ambient light
reflectance ρa is usually considered as a linear combination of ρb and ρi, so that it does not provide
more discrimination power than ρb and ρi alone.

• Surface roughness. The roughness of the surface of an object, m, is a characteristic of the distribu-
tion of micro-facet slopes. Besides, it is only applicable to glossy objects and only refers to a part
of the object surface.

• Object local shape. The shape of an object is another property which results very useful in the
real world when wishing to discriminate among objects. However, although every pixel encodes the
surface normal vector n of the corresponding scene point (or area, being more precise), the global
shape of an object is really encoded in the group of pixels belonging to such object, not in just one
point, what implies the image has been previously segmented.

According to the previous discussion, surface reflectances, in particular ρb, seem to be the most appro-
priate object property for image segmentation and edge detection, from a physics-based point of view.
This election, however, has several implications:
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• Surface reflectance is not really an object property, but a property of the material of the object
surface. Therefore, if the surface of an object consists of several patches with different reflectance
properties, a reflectance-based segmentation algorithm will not put those patches together (think,
for instance, of the case of the black stripes of a zebra). Similarly, the edge map produced by a
reflectance-based edge detector will not contain exclusively the object boundaries.

• In order to be able to segment an image or detect its edges according to surface reflectance, it
is essential that the image contains large enough uniform surface reflectance regions. Otherwise,
image resolution must be increased in order to get meaningful regions in the segmentation output.

Provided that the segmentation/edge detection strategy has been based on surface reflectances, it
results useful to consider the expression for Dc(i, j) as a function F with the following parameters:

Dc(i, j) = F(scene geometry, lighting distribution, surface reflectances) . (4.7)

In equation 4.7, the term scene geometry refers to either the geometry of the objects appearing in the
scene and the lighting geometry. On the other side, camera properties have not been included in the
definition of F because they do not change from pixel to pixel.

Equation 4.7 is important in the sense that states that the segmentation/edge detection algorithm
must be able to find surface reflectance boundaries surpassing changes in scene geometry and lighting
across the scene. This consideration systematizes physics-based segmentation and edge detection and
is the basis for the segmentation/edge detection methods presented in this thesis. On the one hand,
chapter 7 presents an iterative segmentation algorithm whose basis is the recovery of scene shape after
having gathered information about the illumination distribution to finally determine surface reflectance
and use it for joining pixels belonging to the same scene material. On the other hand, chapters 8-9
present an indirect strategy which allows locating surface material boundaries without resorting to
the estimation of surface reflectance. Neither the scene shape or the illumination distribution need to
be known in advance, and can be used to either provide edge data or closed contours, depending on
the particular implementation. Because the central idea of the algorithm of chapter 7 is the recovery
of (numerical) reflectance information, this approach can be called quantitative in opposition to the
algorithms of chapters 8 and 9 which can be named qualitative in the sense they do not need numerical
estimations but use qualities (i.e. properties) of uniform reflectance image areas derived from the image
formation model.

4.4 Discussion about the Experimental Setup

4.4.1 Camera configuration and input data

The diagram of figure 4.2 depicts graphically the setup which is proposed within this general framework
for image segmentation and edge detection. The details are discussed in the following:

• Equation 4.1, and all the expressions about the image formation model presented in chapters 2
and 4, assume the camera output is linear, or, in other words, it is proportional to scene radiance.
This assumption, which is typical from physics-based vision algorithms, implies the camera cor-
rection circuit must be turned off (γ = 1 in equation 2.47) before taking any image. In case the
camera does not allow such an operation, the images captured will have to be linearized as was
explained in section 2.4.5.

• Depending on the physics-based image partitioning/edge detection approach, it can be necessary
to make available estimates of scene parameters, such as the illumination distribution, before
processing the image. This is the case of the segmentation algorithm proposed in chapter 7. To
this end, chapter 5 presents a set of methods for estimating lighting information for a case of
one distant directional light source and ambient illumination. Since the estimates depend on the
camera configuration, some capabilities of present cameras will have to be switched off, such as
the Automatic Gain Control. In fact, any change in the operating parameters of the camera —the
colour channel gains, the camera optics aperture (i.e. the camera F-number) and the shutter speed
(i.e. the exposure time)— will lead to the repetition of, in particular, the estimation of the lighting
strengths.
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Fig. 4.2. Diagram of the experimental setup for physics-based image segmentation and edge detection.

• The different sources of noise corrupting irradiance measurements in CCD-based cameras can be
classified as spatial, referring to the PRNU and the DCNU, and non-spatial, or random, for the
rest of noises. Although rough, this taxonomy is important because the influence of non-spatial
noises can be reduced if several images of the same scene are taken and the corresponding average
image is processed instead of the individual images [98,109]. In effect, if σ is the standard deviation
of random noise, the standard deviation of the mean is given by σ/

√
N , where N is the number

of frames averaged [272]. In this way, it can be said the noise is reduced by the square-root of the
number of frames averaged (see table 4.2).

• As will be shown in chapter 6, every digital measurement produced by a camera can be assigned
an uncertainty by means of the noise model introduced in section 2.4.4, provided that the relevant
parameters of equation 2.44 are estimated, or, in other words, if the camera is radiometrically
calibrated. These uncertainties take into account all the noise sources mentioned in section 2.4.4 for
every possible digital intensity level. That is to say, if frames were not averaged, the uncertainties
would correspond to the measurements contained in the images; otherwise, those uncertainties
would represent upper bounds and should be recalculated, if needed, removing the fraction of
noise already accounted for.

• Finally, a post-processing stage is planned within this segmentation/edge detection framework with
the aim of removing useless information in the algorithm output. In the case of image segmentation,
this refers to those regions which, despite having accounted for camera noise, are still created by
the algorithm because of, mainly, an anomalous behaviour of the partitioning procedure in extreme

Table 4.2. Percentage of non-spatial noise retained by frame averaging.

# frames percentage of original

averaged (N) noise retained (100/
√

N)

1 100.0
2 70.7
3 57.7
4 50.0
5 44.7
10 31.6
20 22.4
50 14.1
100 10.0
1000 3.2
10000 1.0
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cases. Clearly, the usefulness of a region for the subsequent image processing steps should be the
main criterion for its survival within this post-processing stage. Some examples of usefulness-
related criteria could be linked to region size (i.e. tiny regions correspond, at best, to small details
which are perhaps not relevant for the task at hand), contrast with neighbouring regions (i.e. large
contrasted regions are preferred rather than small regions differing very little in colour), etc.
As for edge detection, the final post-processing stage is intended to get rid of spurious edges. They
are typically characterized by a short length and for being isolated from every other edge.

4.4.2 Performance evaluation of segmentation and edge detection algorithms

General discussion

Since the innumerable edge detection and segmentation algorithms published are all based on their
own working hypotheses, the development of common and reasonable criteria for evaluating and com-
paring their performance has always been a concern for researchers in the area. Given the theoretical
complementary nature of the edge detection and the image segmentation problems, it is reasonable to
think of a common framework for the evaluation of these algorithms output. That is to say, one can
evaluate the quality of a segmentation by assessing the quality of the resultant region boundaries, and,
therefore, perform the evaluation of both types of algorithms over exclusively edge maps. However, it is
well known that edge detectors rarely produce closed contours, while this is precisely the distinguishing
feature of segmentation algorithms output. Because of this, roughly speaking, two types of evaluation
strategies can be found in the vision literature: assessment strategies which evaluate the quality of edge
maps, and, therefore, can be applied to either edge detection and image segmentation algorithms; and
strategies specifically oriented towards assessing image segmentation algorithms, mainly because they
measure some qualities of the interior of the regions produced by the algorithm or because they rely
on close contours.

In an often-cited survey [306], Zhang makes a deeper classification. First, he distinguishes between
two general approaches: analytical and empirical assessment. On the one hand, analytical methods refer
to the analysis of the segmentation algorithm on the basis of its properties, such as: (1) the type and
amount of a priori knowledge that has been incorporated into the algorithm; (2) the processing strategy,
whether it is parallel, sequential, iterative or mixed; or (3) the processing complexity and efficiency.
Empirical methods, on the other hand, judge the algorithms analyzing their output. Among them,
some are oriented towards measuring the “goodness” of the results (empirical goodness methods) while
others produce some discrepancy measures between the algorithm output and the expected output,
often referred to as ground truth data (empirical discrepancy methods). In this latter case, the reference
segmentation would be automatically generated in the case of synthetic images, while, for real images,
one or several manually segmented images would play the reference role.

Analytical methods avoid the implementation of the algorithm and, thus, reduce the influence of the
experimental arrangement. However, not all properties of a segmentation/edge detection algorithm can
be captured by analytical studies. In this sense, empirical methods are of larger scope and more general
at the expense of implementing the algorithm to be able to perform the assessment. Within this class
of methods, empirical goodness methods avoid generating a reference segmentation/edge map by using
goodness measures. Nevertheless, those goodness measures should be devised independently of the
characteristics of the image. For instance, the intra-region uniformity and the inter-region contrast are
region-oriented goodness measures proposed in many studies [148, 218, 219, 244, 293] that were mostly
conceived for images where scene curvature was not very noticeable and thereby object projections
could be considered as more or less uniform intensity areas. An empirical discrepancy method can
still be more general since the evaluation is based on contrasting the algorithm’s output with an
already computed reference. The number of pixels incorrectly classified as edge pixels or the number
of incorrectly segmented pixels, their position and the number of regions are among the different
discrepancy measures proposed in the literature [6, 81, 96, 106, 149, 150, 189, 231, 234, 239, 267, 293, 296,
297]. Recently, Zhang proposed another set of discrepancy measures based on region features such as
area, eccentricity or perimeter, among others [305,307,308].
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Clearly, a single evaluation measure is not enough to judge the result of a segmentation/edge
detection algorithm. Haralick and Shapiro stated this idea in [84] in the form of three heuristic criteria
for image segmentation evaluation: regions must be uniform and homogeneous, regions shape must be
simple, without many holes, and adjacent regions must present significatively different values for the
feature defining the partitioning process. Liu and Yang proposed then a function based on these criteria
using the number of regions, their areas and the colour error for each region [152]. A more recent work
by Borsotti et al. [18] improved this expression after proving empirically that the expression by Liu
and Yang did not satisfy, in general, the criteria by Haralick and Shapiro. Some of the studies cited
above also propose combined measures [218,267,296,304].

Furthermore, many of the aforementioned evaluation methods were developed assuming image
regions of uniform intensity and introduce goodness measures in the evaluation expression representing
this fact. For instance, in the case of Liu and Yang, the corresponding function is given as [152]:

F (I) =
1

1000(N · M)

√
R

R∑

i=1

e2
i√
Ai

, (4.8)

where N × M is the size of the image, R is the number of regions, Ai is the area of region i and ei is
the colour error, calculated as the sum of the differences between region pixel colours and the colour
attributed to region i. Even if colour space transforms or photometric invariants are used to tolerate
the change of intensity due to scene curvature, shadows and/or highlights, the inclusion of factors such
as ei in the evaluation expression implies a dependence of the evaluation results on how accurately the
model of image formation assumed for the evaluation function represents real images. In the general
case, according to section 4.3, ei should refer to the difference between the reflectance(s) attributed to
a given pixel and the reflectance(s) assumed for a region. Depending on the complexity of the image,
the mere computation of such goodness measures can be quite difficult if not impossible (chapter 7
will include a discussion on the subject). From this point of view, it is obvious that, in general, it is
preferable an evaluation function not including any reference to the colours present in the resultant
regions. Clearly, this limits the applicability of goodness measures such as the intra-region uniformity
and the inter-region contrast in this context.

Summing up, since using discrepancy-based measures the evaluation procedure reduces to an ap-
propriate comparison with the reference segmentation and nothing is assumed about the characteristics
of the true image regions, given their generality, these evaluation measures seem to be the most appro-
priate election for a general framework of image segmentation and edge detection. Bowyer et al. even
propose other types of measures as secondary metrics in [20, p. 78]: “... Metrics based on qualitative
properties of detected edges may well be useful as additional secondary metrics, but they do not seem
appropriate as primary performance metrics.” Besides, in the case of image segmentation evaluation,
it is proposed to base part of the discrepancy on the pixel classification facet of image segmentation.
Accordingly, this part of the assessment would consist in determining whether image pixels are cor-
rectly grouped or not, as well as the degree of over- and under-segmentation. The following sections
indeed propose a strategy in this line. The other part of the evaluation would take into account distance
information between true and predicted region contours. In this way, the evaluation procedure would
also measure the accuracy of the segmentation algorithm when locating reflectance transitions.

Image segmentation evaluation and the confusion matrix

This section comments on the use of a matrix C which constitutes the basis for many discrepancy-based
segmentation evaluation strategies. C gathers information about the distribution of pixels between the
different regions of the image, either real or predicted. An entry of C, say (i, j), contains the number
of pixels belonging to region i in the reference segmentation (reference region from now on) such that
are labeled as pertaining to region j in the algorithm output (output region from now on). A particular
case of this matrix, in which, among other features, C is square, is known as confusion matrix , error
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Table 4.3. Confusion matrix for a two-class classification problem.

output

class foreground background

re
fe

re
n
ce

foreground true positives (TP) false negatives (FN)

background false positives (FP) true negatives (TN)

matrix or contingency matrix according to the terminology employed in the evaluation of classifiers
performance [261]1.

In a classification context, the percentage of correctly classified pixels or, conversely, the percentage
of misclassified pixels are the discrepancy measures that come most readily to mind and that can be
easily obtained from C. In a two-class case, e.g. a thresholding task, the pixels which are classified as
belonging to the foreground figure but are actually part of the background are called false positives
or type I errors, while pixels allocated to the background being part of the foreground figure are the
false negatives or type II errors. According to table 4.3, the type I error rate is FP/(FP + TN), the
type II error rate is FN/(FN + TP ), while the percentage of correctly classified pixels or accuracy is
(TP + TN)/(TP + TN + FP + FN) [6].

In a multi-class case, say N classes, C is an N ×N matrix and the percentage of correctly classified
pixels is given by the trace of C,

∑N
i=1 Cii/

∑N
i,j=1 Cij . As for the misclassified pixels, the multi-class

type I error for class k or percentage of false positives for class k is expressed as [297,306] (see figure 4.3):

M
(k)
I =

(
N∑

i=1

Cki

)
− Ckk

N∑

i=1

Cki

× 100 , (4.9)

while the multi-class type II error for class k or percentage of false negatives for class k is given by:

M
(k)
II =

(
N∑

i=1

Cik

)
− Ckk




N∑

i=1

N∑

j=1

Cij


 −

N∑

i=1

Cki

× 100 . (4.10)

In a recent paper [149], Lewis and Brown introduce what they claim to be a generalized confusion
matrix for producing accurate estimates of the area covered by each class in an image, typically
resulting from remote sensing. Essentially, they put matrix C as the combination of a target matrix T
and an output matrix Y , where both matrices have as many rows as pixels in the image and each cell
of both is the membership of the corresponding pixel to a class: T contains reference memberships,
while Y contains the memberships produced by the classification algorithm. Finally, each row of both
matrices sum to unity and C = TT Y is defined. With the introduction of the membership concept,
they contemplate real situations where several classes may occur in the field of view of the satellite
sensor represented by a single pixel. Besides, the authors introduce an error matrix E as the difference
between the generalized confusion matrix and a reference matrix R = TT T . Finally, they propose
several measures that summarize the information contained in the error matrix, such as the average
error among all the pixels, or the error for a given class.

1 C is sometimes given as an array of probabilities, instead of pixel counts. That is to say, C(i, j) is calculated
as the quotient between the number of pixels in reference class i classified in output class j and the number
of pixels in the image.
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k
↓

TN · · · TN FN TN · · · TN

...
. . .

...
...

...
. . .

...

TN · · · TN FN TN · · · TN

k → FP · · · FP TP FP · · · FP

TN · · · TN FN TN · · · TN

...
. . .

...
...

...
. . .

...

TN · · · TN FN TN · · · TN

Fig. 4.3. Confusion matrix for a multi-class classification problem. In the matrix, TP, TN, FP and FP
correspond to class k.

To finish with this brief review on the use of the confusion matrix, it is important to cite a new
discrepancy evaluation strategy rooted on the same principles of the confusion matrix and known as
Receiver Operating Characteristic (ROC) curve analysis . ROC analysis comes from psychophysics
and signal detection theory and has received an important amount of attention within the vision
community [1, 20, 43, 51, 233, 234, 256, 259, 298]. A ROC curve plots true positive rates against false
positive rates as a decision parameter of the classifier is varied (i.e. the classification threshold). It is
therefore mainly suited for two-class classification problems, such as edge detection, although Rees et
al. [234] addressed multi-class classification evaluation by means of ROC analysis. They mainly choose
a single operating point based on a risk/cost matrix that relates the cost of misclassification between
all pairs of classes and then plot this on a class by class basis. In this way, they avoid the generalization
of the two-class ROC curve to an (n-1)-order hypersurface for n classes. In any case, ROC analysis
is based on the same principles as the confusion matrix. In fact, no new performance measures are
provided, it is rather a change of philosophy, as Bowyer et al. remarked regarding the evaluation of
edge detectors [20, p. 80]: “... What is needed is to evaluate detectors over a range of the same TP
values. This is the essence of the concept of the receiver operating characteristic (ROC) curve. Sound
comparisons are more appropriately made using ROC curves rather than isolated (TP,FP) performance
points.”

A discrepancy-based evaluation strategy for image segmentation

Although it is true that sometimes a classification task follows a segmentation task in the pipeline
of a vision application, and that, therefore, the evaluation can be applied directly to the output of
the classifier, on many occasions it can be important to evaluate the segmentation output per se. An
important difference which arises then is that, unlike the case of a typical classification task, the final
number of output regions/classes does not need to agree with the number of reference regions/classes,
what was already pointed out when the confusion matrix was introduced above. This fact can be
the consequence of two misbehaviours of the segmentation algorithm, which can happen alone or in
combination: (1) on the one hand, a reference region can appear split in several output regions, which
is known as over-segmentation; and (2) on the other hand, several reference regions can result merged
in an only output region, which is known as under-segmentation. A non-null degree of over- and/or
under-segmentation derives in the following consequences from a practical point of view:

(1) the confusion matrix is no longer square, and, in fact, the term overlapping area matrix has been
introduced to refer to this new structure [12];
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(2) the region numbering of the reference segmentation rarely coincides with the region numbering of
the algorithm’s output, and

(3) due to (1) and (2), the correspondence between reference and output regions is not trivial (i.e. the
k-th row and the k-th column of the confusion matrix do not refer to the same class, unlike the
matrix of figure 4.3).

Because of all the aforementioned for the general case of image segmentation, a set of new perfor-
mance measures are introduced next in accordance with the special features of the confusion matrix.
For notation purposes, a reference region i will be denoted as Ri, while output region j will be written
as R̂j . Every measure is summarized in table 4.4 and explained in the following:

• The percentage of Correctly Grouped pixels, CG, aims at accounting for those pixels which, be-
longing to a reference region Ri, are put together in a single output region R̂j . That is to say, the
goal is to determine to which degree the segmentation algorithm does not mix pixels from different
reference regions into a single output region. Being strict, only those output regions which com-
pletely overlap with a reference region should be considered in CG. However, even in the best of
the segmentations, a certain level of dispersion can be found, in the sense that small fractions of
regions R̂j fall outside the main region Ri. Because of this, the definition of CG has been relaxed
through the parameter p, by which CG(p) represents the amount of pixels which belong to a region

R̂j which is mostly included in a region Ri, where the meaning of mostly depends on p. Therefore,
the amount of dispersion which is tolerated is expressed through parameter p, being p = 100 the
most restrictive case which leads to the first definition of CG. Observe that this scattering of pixels
can be easily detected looking at the columns of the confusion matrix, which will contain more
than one non-null entry in case a region R̂j groups pixels from several regions Ri.
As can be easily guessed, CG tries to determine the correspondence between reference and output
regions. With the introduction of the parameter p, this is particularly true when p > 50, since, on
those occasions, SRa(·, R̂j , p) takes value 1 only for one Ri, which would correspond to the region

Ri which mostly overlaps with region R̂j . For p ≤ 50, SRa(·, R̂j , p) can take value 1 for several Ri,

which makes CG(p) account for several fractions of R̂j ; since the sense of correspondence has been
lost, CG can be said less meaningful for those values of p.
As a final remark, notice that, however, even for p > 50, several output regions R̂j can correspond
to a single reference region Ri. As was said in the first definition of CG, this measure just tries to
determine to which degree the segmentation algorithm does not put together pixels belonging to
different reference regions. Therefore, a segmentation with a 100 % of correctly grouped pixels can
be over-segmented (see later in cases (2) and (3) of the example).

• The percentage of Under-Segmentation, US, represents the amount of pixels of the image which
have been assigned to regions R̂j which cover several reference regions Ri. As before, parameter p
allows relaxing the definition of US to tolerate slight segmentation errors, so that US(p) accounts for

regions R̂j whose overlapping with a reference region Ri is below p%. Observe that US accumulates
all the pixels of the output region if the previous circumstance arises, contrary to CG, which
accumulates fractions of output regions. This is because the concept of under-segmentation is
relative to a segmentation; that is to say, it would be said that the output of a segmentation
algorithm under-segments an image. CG, however, accounts for groups of pixels which are correct
from the point of view of not belonging to several reference regions. In this sense, US has to take
into account those output regions which under-segment the image.

• The percentage of Over-Segmentation, OS, accounts for pixels of output regions R̂j which split a
reference region Ri. In this case, the key role is played by the rows of the confusion matrix. If a row,
say i, of C contains several non-null entries is because the reference region Ri appears divided into
the regions R̂j corresponding to those non-null entries. Again, the amount of dispersion tolerated
is controlled through parameter p.

Other authors have proposed measures rooted on principles similar to CG, OS and US, and, there-
fore, aiming at evaluating the amount of misclassification in the segmentation output as well as the
level of under- and over-segmentation. A representative set is summarized in tables 4.5 and 4.6 using
the notation of table 4.4 and the overlapping area matrix, although the formulations appearing in the
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Table 4.4. Discrepancy measures formulae.

Nr number of reference regions

No number of output regions

n(Ri) =

No∑

k=1

Cik size of region Ri

n(R̂j) =

Nr∑

k=1

Ckj size of region R̂j

n(I) =

Nr∑

k=1

n(Rk) =

No∑

k=1

n(R̂k) size of image

SRa(Ri, R̂j , p) =





1 if
Cij

n(R̂j)
× 100 ≥ p

0 otherwise

p % pixels of R̂j are concentrated in a
Single Reference region Ri

SRb(R̂j , p) =





1 if
max

k=1..Nr

{Ckj}

n(R̂j)
× 100 ≥ p

0 otherwise

at least p % pixels of R̂j are concen-
trated in a Single Reference region Ri

SO(Ri, p) =





1 if
max

k=1..No

{Cik}
n(Ri)

× 100 ≥ p

0 otherwise

at least p % pixels of Ri are concen-
trated in a Single Output region R̂j

CG(p) =

Nr∑

i=1

No∑

j=1

SRa(Ri, R̂j , p) × Cij

n(I)
× 100 percentage of Correctly Grouped pix-

els, at level p

US(p) =

No∑

j=1

(
1 − SRb(R̂j , p)

)
× n(R̂j)

n(I)
× 100 percentage of Under-Segmentation, at

level p

OS(p) =

Nr∑

i=1

(
1 − SO(Ri, p)

)
× n(Ri)

n(I)
× 100 percentage of Over-Segmentation, at

level p

original papers did not explicitly make use of this matrix. A brief discussion on them is provided in
the following:

• On the one hand, Levine and Nazif propose in [147] the under-merging error UM and the over-
merging error OM. While the first one would be a synonymous for over-segmentation (i.e. the error
related to merging less than it should be is over-segmentation), the second one would correspond
to under-segmentation (i.e. a segmentation output which is the result of more fusion than should
be leads to under-segmentation). In both measures, the authors associate to every output region

R̂j the reference region Rk with the maximum spatial coincidence, and compute the error measures
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Table 4.5. Other evaluation measures based on the overlapping area matrix (I).

authors formulae measure description

Levine and Nazif [147]
UM =

∑No

j=1 (n(Rk) − Ckj) ,
k = arg max

i=1..No

{Cij} under-merging error

OM =
∑No

j=1

(
n(R̂j) − Ckj

)
,

k = arg max
i=1..No

{Cij} over-merging error

M =

√(
UM
n(I)

)2

+
(

OM
n(I)

)2
overall performance

Huang and Dom [106]
em

R =

∑Nr

i=1

∑
j 6=arg max

k=1..No

{Cik} Cij

n(I)
missing rate

ef
R =

∑No

j=1

∑
i6=arg max

k=1..Nr

{Ckj} Cij

n(I)
false alarm rate

pR = 1 − em
R + ef

R
2

overall performance

Hoover et al. [99]
(Ri, R̂j) is an instance of a correct detec-

tion if Cij ≥ T×n(R̂j) and Cij ≥ T×n(Ri)

#CC, number of correct detec-
tion instances (0.5 < T ≤ 1.0 is
a threshold percentage)

(Ri, R̂j1 , . . . , R̂jx) is an instance of an over-

segmentation if Cijt ≥ T × n(R̂jt), ∀t and∑x

t=1 Cijt ≥ T × n(Ri)

#OC, number of over-segmen-
tation instances (0.5 < T ≤ 1.0
is a threshold percentage)

(Ri1 , . . . , Rix , R̂j) is an instance of an
under-segmentation if

∑x

t=1 Citj ≥ T ×
n(R̂j) and Citj ≥ T × n(Rit), ∀t

#UC, number of under-segmen-
tation instances (0.5 < T ≤ 1.0
is a threshold percentage)

Ri is a missed region if it does not partic-
ipate in any instance of correct detection,
over-segmentation or under-segmentation

#MR, number of missed regions

R̂j is a noise region if it does not partic-
ipate in any instance of correct detection,
over-segmentation or under-segmentation

#NR, number of noise regions

accumulating the resulting misclassified pixels. Therefore, they are not intended to compute the
level of fragmentation of reference regions into output regions and vice versa. To combine both
errors in an overall performance measure, the authors propose a sum in quadrature of UM and
OM.

• Later, Huang and Dom presented two quantities very similar to the under- and over-merging errors,
but not identical, which they called missing rate em

R and false alarm rate ef
R [106]. em

R rely on
determining, for every reference region, the output region for which the matching is maximum,
while ef

R needs the correspondence between every output region and its maximum reference region.
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Table 4.6. Other evaluation measures based on the overlapping area matrix (II).

authors formulae measure description

Mezaris et al. [169]

let A = {(Ri, R̂j)} be such that, given

R̂j and ij = {i|j = arg max
k=1..No

{Cik}}, i =

arg max
k∈ij

{Ckj}, ∀j = 1..No

let NR and NS denote the set of, respec-
tively, non-paired reference and non-paired
output regions

Ei =
∑

p∈R∗
i

f1 (d(p, Ri)) +

∑

p∈R̂∗
j

f2 (d(p, Ri)) , ∀(Ri, R̂j) ∈ A

Ei =
∑

p∈Ri

f1 (d(p, Ri)) , ∀Ri ∈ NR

Fj = α
∑

p∈R̂j

f1(d(p, R(p))), ∀R̂j ∈ NS

E =

Nr∑

i=1

Ei +
∑

R̂j∈NS

Fj

overall performance, where:

1. R∗
i =

(
Ri − Ri

⋂
R̂j

)
,

2. R̂∗
j =

(
R̂j − Ri

⋂
R̂j

)
,

3. R(p) is the reference region
to which p belongs,

4. d(p, R) is the distance from
a pixel p and the nearest
boundary pixel of region R,

5. f1 and f2 are:

f1(d) =
0.001

10
d ,

f2(d) =

{
0.001
10

d if d ≤ 10

0.001 if d > 10
,

and
6. α = 2

Pignalberi et al. [229]
C =

∑No

j=1

(
n(Rxj ) − Cxjj

)

No

,

xj = arg max
i=1..Nr

{Cij}
cost of erroneously segmented
pixels

U = n(I) − ∑Nr

i=1

∑No

j=1 Cij cost of unlabeled pixels

Hu = k
∑

j| ∑Nr
i=1 mij>1

n(R̂j)

Ho = k
∑

j| ∑Nr
i=1 mij=0

n(R̂j)

handicaps of under- and over-
segmentation, where

1. mij =



1 if j = arg max
k=1..No

{Cik}

0 otherwise
,

and
2. k is a constant to enlarge

the variability range

F = w1C + w2Hu + w3Ho + w4U fitness function (
∑

i

wi = 1)

Once determined those correspondences, both measures accumulate the pixels of the non-maximum
intersections between reference and output regions. As well as for Levine and Nazif, these measures
are not intended to compute the level of fragmentation of reference regions into output regions and
vice versa. Furthermore, as is indicated in figure 4.4, if a correspondence is established between a
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R̂j↓




bad

← maximal matching in the column




bad

Ri →

︸ ︷︷ ︸
bad

︸ ︷︷ ︸
bad↑

maximal matching in the row

Fig. 4.4. Illustration of the missing and false alarm rates over the confusion matrix in a particular case.

reference region Ri and an output region R̂j in em
R , R̂j need not necessarily have the maximum

intersection with Ri when computing ef
R; as a consequence, what is considered misclassification

by one of the measures can be considered a correct classification by the other one. OS and US
avoid this difficulty by accumulating the whole region, respectively, Ri and R̂j , when the over- and
under-segmentation is detected, instead of accounting for the pixels not belonging to the maximum
intersection, as in em

R and ef
R. This fact can make em

R and ef
R difficult to interpret. Finally, Huang

and Dom introduce an overall performance measure pR from the average between em
R and ef

R, what,
given the case of figure 4.4, makes this measure meaningless.

• In [99], Hoover et al. classify every pair of reference Ri and output R̂j regions as correct detections,
over-segmentation, under-segmentation, missed or noise, and then build evaluation metrics counting
instances of every case. As can be observed, the percentage threshold T used during the classification
plays the same role as p in CG, OS and US. Besides, as the authors show in the paper, for 0.5 < T <
1.0, any region can contribute to up to three classifications, one each of correct detection, over- and
under-segmentation. Although the measures are easily interpretable, however, unlike CG, OS and
US, the evaluation metrics depend on the number of regions in the image, which makes the metrics
dependent, thus, on the image. This fact prevents using a set of test images for getting a global
measurement of algorithm performance in terms of misclassification, over- and under-segmentation;
that is to say, when comparing several algorithms, it will have to be done on the basis of a single
image each time, instead of considering a representative set of images and computing a global
performance measure for each.

• Mezaris et al. propose in [169] an overall performance measure whose cost terms take into account,
apart from the spatial coincidence between reference and output regions, the distance between
misclassified pixels and the corresponding reference region. The output of the evaluation process is
an only measure which combines the aforementioned distance and the amount of misclassification,
over- and under-segmentation in a single number. All in all, although it is clear that the measure
takes lower values as the segmentation output is better and can be used to rank algorithms per-
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Fig. 4.5. Examples of segmentations and their discrepancy measures (I): [upper row,left] original image (20×20
pixels); [upper row,right] reference contour image; (1)-(6) examples of contour images.

formance, it results difficult to interpret because a lot of information is put together in a single
number.

• Finally, Pignalberi et al. define in [229] another cost function combining the cost associated with
erroneously segmented pixels together with handicap functions accounting for under- and over-
segmentation; this function was intended as a fitness function for tuning the parameters of seg-
mentation algorithms by means of evolutionary techniques. Contrary to the case of Mezaris et al.,
this time, terms accounting for misclassified pixels, over-segmentation and under-segmentation are
clearly defined, although the overall performance measure suffers from the same drawback as in the
case of Mezaris et al. Over- and under-segmentation level measurement takes into account whole
regions, similarly to OS and US. Nevertheless, a percentage threshold is not included so that a single
misclassified pixel can make a large region to be considered over- or under-segmented. Therefore,
over- and under-segmentation are greatly penalized.

Discussion over an illustrative example

By way of illustration of CG, OS and US, figure 4.5 shows some examples of segmentation for a very
simple image, while the corresponding confusion matrices and the related performance measures appear
in, respectively, figure 4.6 and table 4.7. The six cases considered are discussed in the following lines:
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C1 =




100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100


 C2 =




25 25 25 25 0 0 0
0 0 0 0 100 0 0
0 0 0 0 0 100 0
0 0 0 0 0 0 100




C3 =




25 25 25 25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 25 25 25 25 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 25 25 25 25 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 25 25 25 25




C4 =




100 0 0
100 0 0
0 100 0
0 0 100


 C5 =




50 25 0 0 0 25
0 25 25 0 0 50
0 25 0 25 50 0
0 25 25 0 50 0


 C6 =




100 0 0 0
10 90 0 0
0 0 90 10
0 0 0 100




Fig. 4.6. Examples of segmentations and their discrepancy measures (II): matrices C1 to C6 for, respectively,
cases (1) to (6) of figure 4.5.

(1) This case corresponds to a perfect segmentation and, accordingly, the percentage of correctly
grouped pixels is 100, while the percentages of over-segmentation and under-segmentation are 0.

(2) Now, reference region R1 appears split into output regions R̂1 − R̂4. None of the regions R̂j mix
pixels from several true regions Ri, what leads to a CG value of 100, but 25% of the image is
over-segmented.

(3) This is an extreme case where all the reference regions appear split in the segmentation output,
what leads to a 100% of over-segmentation. Pixels are however correctly grouped and, thus, CG
= 100.

(4) In this case, two reference regions have been put together and, consequently, a certain degree of
under-segmentation must be measured. Since those two regions cover 50% of the image pixels, the
degree of under-segmentation is also 50%. The remaining 50% of pixels are correctly grouped.

(5) A more complex situation is presented in this example, where only pixels from regions R̂1 and R̂4

are correctly grouped (18.75%) and the rest belong to regions under-segmenting the image. Since

the area of all the reference regions is shared by more than one region R̂j , the whole image is
over-segmented (OS = 100).

(6) Finally, this case shows the effect of parameter p in the discrepancy measurements. As it has been

depicted before, p determines the degree of tolerance with regions R̂j that all but a reduced set of

their pixels fall in a region Ri. In the example, region R̂1 is almost identical to region R1 except
for a single column of pixels which belong to region R2 which have been “stolen” to region R̂2.
The same happens between regions R̂4 and R̂3. If p = 100, the percentage of correctly grouped
pixels attains 45%, corresponding to regions R̂2 and R̂3, while for p = 90 this percentage goes up
to 95% because only the pixels of R̂1 which fall into R2 and the ones of R̂4 which fall into R3 are
discounted. As for the percentage of over-segmentation, p = 100 leads to account in OS for pixels
from R̂2 and R̂3 as well as the misclassified pixels of R̂1 and R̂4, what leads to consider 50% of
the image over-segmented. When p = 90, only the misclassified pixels are accounted for (5% of
the image). Observe also that, in this case, CG + US < 100.

In the light of the example, CG, OS and US can be said to produce accurate measures of the, re-
spectively, correct grouping, over-segmentation and under-segmentation present in the segmentation
output. Furthermore, parameter p of CG, OS and US provides the desired tolerance to low pixel
dispersion among regions.

For comparison purposes, the measures for Huang and Dom [106], Hoover et al. [99] and Mezaris
et al. [169] for this example are also provided in table 4.7. Several conclusions can be drawn from the
resulting values:

• em
R and ef

R behave exclusively as misclassification rates since they only take into account pixels out
of the maximal matchings, not the whole regions involved in over- and under-segmentation. As a
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Table 4.7. Examples of segmentations and their discrepancy measures (III): discrepancy measures for fig-
ure 4.5. The first group of rows is for CG, OS and US, while the rest of groups are for, respectively, Huang and
Dom [106], Hoover et al. [99] and Mezaris et al. [169] measures.

case → (1) (2) (3) (4) (5) (6a) (6b)

p 100 100 100 100 100 100 90

CG 100.00 100.00 100.00 50.00 18.75 45.00 95.00

OS 0.00 25.00 100.00 0.00 100.00 50.00 0.00

US 0.00 0.00 0.00 50.00 81.25 55.00 0.00

em
R 0.00 18.75 75.00 0.00 50.00 5.00 –

ef
R 0.00 0.00 0.00 25.00 43.75 5.00 –

pR 100.00 90.63 62.50 87.50 53.13 95.00 –

T 1.00 1.00 1.00 1.00 1.00 1.00 0.90

# CC 4 3 0 2 0 0 4

# OC 0 1 4 0 0 0 0

# UC 0 0 0 1 0 0 0

# MR 0 0 0 2 4 4 0

# NR 0 0 0 0 6 4 0

E 0.0000 0.0260 0.1940 0.0330 0.0955 0.0018 –

consequence, em
R and ef

R measures tend to be more benevolent with the segmentation output with
regard to OS and US because the latter invalidate whole regions.

• The measures by Hoover et al. provide performance information closely related to CG, OS and US,
but, however, no data are available about whether the detected over- and under-segmentation is
significative on the particular image considered. Furthermore, it is worth discussing the results for
case (6b) of table 4.7. In this case, thanks to the value given to parameter T , the small dispersions
of pixels are tolerated and four correct classifications are found. This is also tolerated by OS(90)
and US(90), but, unlike the measures by Hoover et al., CG(90) is able to indicate that there are
pixels which are not correctly labeled in the segmentation output.

• Finally, regarding the global performance measure of Mezaris et al., it is worth noting the following:
(a) very similar values are produced for cases (2) and (4), corresponding to, respectively, over- and

under-segmentation cases, although case (4) involves twice more misclassified pixels than case
(2);

(b) case (3), which corresponds to a massive over-segmentation, is ranked twice worse than case
(5), which is visually and numerically less correct (look at the percentage of pixels correctly
grouped, CG, of both cases).

As for (a), clearly it is due to the value given to parameter α in Fj (see table 4.6), which pe-
nalizes over-segmentation (Fj) over the miss-classification (Ei calculated for set A) and under-
segmentation (Ei calculated for set NR) measures. Regarding (b), since in case (5) both over- and
under-segmentation take place simultaneously, it is more difficult to look for the cause of the mis-
behaviour; nevertheless, it seems to be the same as before. As was already commented, the mixture
of spatial coincidence and distance information makes interpretation more difficult.

By way of conclusion:

• It is clear that global performance measures do not provide the level of detail which can be necessary
to evaluate correctly the behaviour of segmentation algorithms. Besides, since the different measures
are combined in a single expression, a weight has to be chosen for every term, what is clearly not
trivial.

• In the same line as the previous point, mixing spatial coincidence information with distance yields
performance measures which are difficult to interpret.
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Table 4.8. Some measures for evaluating the performance of edge detection algorithms.

measure formulation typical values

Pratt’s FOM FOM(α) =
1

max{n(A), n(B)}
∑

x∈B

1

1 + αd(x, A)2
α = 1/9

Discrepancy Percentage D =
n(A∆B)

n(I)
—

Baddeley
∆p

w(A, B) = p

√
1

n(I)

∑
x∈I |w(d(x, A)) − w(d(x, B))|p

w(t) = min{t, c}
p = 2, c = 5

A is the set of image locations corresponding to edges in the reference edge map
B is the set of image locations corresponding to edges in the edge map under evaluation
I is the set of all image locations
n(I) is the number of elements of set I
A∆B = (A \ B)

⋃
(B \ A) (exclusive-or for sets)

B \ A = {x ∈ B|x 6∈ A} (set minus operator for sets)
d(x, Y ) is the distance between image location x and the nearest edge in Y

• The introduction of a tolerance percentage threshold when calculating the percentage of over- and
under-segmentation avoids pathological cases such as the one described before involving a single
misclassified pixel.

• Nevertheless, the three previous remarks are not intended to discard the measures reviewed in this
chapter as well as others not appearing here. However, it seems better to use them as secondary
measures providing additional information to CG, OS and US values, as will be done later in
chapter 9.

Edge detection evaluation

An important amount of strategies for assessing the quality of an edge map —either coming from
an edge detection or an image segmentation task— can be found in the related literature. Among
all of them, Baddeley’s measure [6] was deemed the best evaluation technique in a recent survey [46],
which involved, among others, the often-cited Pratt’s Figure of Merit (FOM) [232] and the discrepancy
percentage, considered in Zhang’s survey as one of the best discrepancy measures [239, 306]. As can
be observed, all three are based on measuring the distance between edge pixels in the reference edge
map and the edge map produced by the algorithm under evaluation. Table 4.8 summarizes the three
aforementioned discrepancy-based measures.

As can be observed, while Pratt’s FOM scores good edge maps with larger values than bad edge
maps, the percentage of discrepancy and Baddeley’s measure both attain lower values with better edge
maps. On the other hand, Pratt’s FOM yields values between 0 and 1, as well as the discrepancy
percentage, but Baddeley’s scores between 0 and c (see table 4.8).

As a final remark, it is important to notice that Pratt’s FOM, and other similar measures such as
the mean error distance2 or the mean square error distance3, are mostly sensitive to type I errors (i.e.
false positive edges). For example, if there are no type I errors, B ⊆ A, then FOM(·) = n(B)/n(A)
regardless of the positions of the type II errors. In fact, Baddeley describes FOM as “a kind of average
localization error for the type I errors only” [6]. Nevertheless, FOM is still used by many authors
(see [35,57,68,135,282,290] among many others).

2 e = 1
n(B)

∑
x∈B d(x, A)

3 e2 = 1
n(B)

∑
x∈B d(x, A)2
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Fig. 4.7. Diagram of the performance evaluation setup for physics-based image segmentation and edge detec-
tion.

4.4.3 Performance evaluation setup

By way of conclusion of section 4.4, the diagram of figure 4.7 depicts a possible performance evaluation
arrangement. In case synthetic images were to be used, the corresponding image synthesizer should
be provided with the camera noise model to generate images with realistic noise. This is another
application of calibrating a camera at the radiometric level, and will also be discussed in chapter 6. The
reference segmentation for the computation of discrepancy measures would be automatically generated
in this case. If a real test image was going to be used instead, the segmentation reference would have
to be provided by other means, typically segmenting by hand the test image.

The success of a physics-based vision algorithm depends on the agreement between the images to
process and the model of image formation around which the algorithm has been devised. Precisely, this
is one of the most interesting features of this sort of vision algorithms, since it is possible to predict
under what circumstances the algorithm should produce correct results. However, depending on its
design, such an algorithm could tolerate some deviations in the image formation model. This would
be an added value of the algorithm and, thus, would be interesting to know about. In figure 4.7, the
term scene noise is introduced in this sense. From a practical point of view, the occurrence of optical
phenomena such as shadows, specularities or interreflections would be examples of deviations in the
image formation model if the vision algorithm only expected body reflection; lack of satisfaction of
the dichromatic reflection model for some object scenes could be another example. Other deviations
can have to do with the lighting (e.g. use of non-uniform lighting, or several light sources) or with the
reflectance properties of scene objects (e.g. non-uniform reflectance or textured objects). In figure 4.7,
the introduction of scene noise is contemplated either by means of synthetic scenes or directly using
real images not covered by the image formation model assumed.
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Estimation of Lighting Distribution Parameters

Vision algorithms relying on the physics of image formation often assume there is an a priori knowledge
about the particular imaging infrastructure, mainly the spectral composition of scene illumination
together with the geometry of the lighting configuration. Methods aiming at reconstructing objects
shape from the shading of their images (mainly Shape From Shading methods) are the primary users
of this type of data, although methods segmenting an image according to the reflectance of the objects
present in the scene may also need them, as it is the case of the algorithm of chapter 7.

The study of the detection of the illumination distribution from images can be traced back to the
1980’s. Since then, several light source estimators have been proposed (see [141,224,311], among many
others, and [301] for a survey and a comparison). The primary motivation behind the work was to
extend shape from shading algorithms to operate with less a priori information, although only cases
with one parallel light source and monochrome images were considered. Research on colour vision [95]
also provided some methods for, mainly, estimating the spectral composition of light sources. More
recently, researchers have developed techniques for dealing with multiple point light sources, which
extend the applicability of the estimations to other areas such as image-based computer graphics or
photo-realistic image synthesis (see [19,248,289,309,312], among the most recent ones).

Assuming a model composed of directional lighting and ambient illumination, this chapter presents
several methods using a spherical calibration object to estimate the direction related to directional
lighting together with the strengths of both light sources, and even their colour if a colour camera is
employed. As most physics-based vision algorithms do, directional lighting is assumed to be parallel,
or, in other words, the light source is assumed distant. Concerning the projection of scene points into
the image plane, two methods are proposed, one assuming orthographic projection, and the other
one assuming perspective projection. Furthermore, both have been derived not only considering the
interaction of light with the calibration object, but also accounting for the noise that corrupts digital
pixel values in CCD cameras. To this end, the model presented in section 2.4.4 has been incorporated
into the estimation methods. Besides, the use of a calibration object with known shape disambiguates
the problem of estimating the parameters of the illumination and, since the estimation can be done
in a controlled way, undesirable effects such as specularities or inter-reflections can be avoided. An
extensive set of experimental results showing the performance of the different methods proposed are
given and discussed at the end of the chapter.

The rest of the chapter is organized as follows: sections 5.1 and 5.2 describe several methods for
estimating the lighting parameters from both single band and colour images assuming orthographic
projection; next, section 5.3 evaluates the error related with the orthographic projection assumption,
while section 5.4 extends all the previous methods to perspective projection; previous work is discussed
in section 5.5; experimental results are provided in section 5.6; finally, conclusions appear in section 5.7.

5.1 Estimation from Single Band Images

Let us consider a particularization of the expanded image formation model of equations 4.1 and 4.4,
consisting of a single light source and ambient lighting illuminating a uniformly coloured matte object,
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so that ρb is constant and ρi = 0 and hence ρa = ρb within the object. If noise is taken into account
(equation 2.44), equation 5.1 results for the object projection pixels:

Dc(i, j) = K(i, j)(Laρb)
cAc + µdc(i, j)A

c + mb(i, j)K(i, j)(Ldρb)
cAc + N c(i, j) , (5.1)

where (Laρb)
c and (Ldρb)

c are, respectively, the ambient and body composite reflectances Cc
a and

Cc
b of the object under study, which were introduced in equations 4.4a and 4.4b. The relevance of

equation 5.1 is that it reveals a linear relationship between Dc and mb for all the object pixels, altered
by the noise coming from N c and the spatial variation in K and µdc. Therefore, if enough mb values
can be related to the corresponding Dc values, so that some pairs (mb,D

c) can be obtained, those
pairs can be fitted by a straight line Dc = αc + mbβ

c, whose parameters, αc and βc, contain (Laρb)
c

and (Ldρb)
c, respectively, and can, thus, be used to estimate them.

In general, getting rid of noise is a major concern when fitting a curve to a set of points. In this
particular case, the noise affecting Dc can be put under control if the following steps are performed:

(1) Take and average several images of the calibration object, to produce µDc(i, j) pixels as a measure
to counteract N c (already discussed in section 4.4.1):

µDc(i, j) = K(i, j)(Laρb)
cAc + µdc(i, j)A

c + mb(i, j)K(i, j)(Ldρb)
cAc . (5.2)

(2) Once N c has been removed from equation 5.1, the variation in µDc for pixels having the same mb

comes exclusively from the PRNU and the DCNU, and the expected intensity value results to be:

Emb
[µDc ] = Emb

[K] (Laρb)
c
Ac + Emb

[µdc]A
c + mbEmb

[K] (Ldρb)
c
Ac , (5.3)

where Emb
[K] and Emb

[µdc] are the averages of, respectively, K(i, j) and µdc(i, j) for the pixels
(i, j) having the mb under consideration. If enough pixels are involved, Emb

[K] ≈ 1 and Emb
[µdc] ≈

EI [µdc], being EI [µdc] the average of µdc(i, j) across the CCD array. This makes αc = (Laρb)
cAc +

EI [µdc]A
c and βc = (Ldρb)

cAc after fitting the pairs (mb,Emb
[µDc ]). This step copes, thus, with

the spatial variation in K and µdc.

If the matte object under consideration is white (ρb(λ) = 1), once the straight line parameters αc

and βc are known, βc = Lc
dA

c is related with the radiance of the directional lighting of the scene, while
αc − EI [µdc]A

c = Lc
aAc is related with the radiance of the ambient illumination, both for the band

of the electromagnetic spectrum corresponding to colour channel c. Notice, however, that both values
include, apart from the camera gain, the effect of the lens aperture and the exposure time, since they
both influence the charge stored at all collection sites. Because of this, calling lighting strengths to
Lc

dA
c and Lc

aAc makes more sense than using the term radiance, and will be the expression used from
now on to refer to them.

The knowledge about mb(i, j) = cos θ(i, j) = n(i, j) · s(i, j) required by the previous procedure
implies, as well, knowledge about n(i, j) and s(i, j) for the same set of pixels. Both issues are discussed
in turn in the following.

5.1.1 Estimation of surface normal vectors

n(i, j) can be determined if the object shape is known beforehand, which implies the use of a calibration
object. Apart from other strategies, some regular objects allow determining the parameters of their
particular shape from their projection in the image. This is the case of a sphere under orthographic
projection. In effect, since the projection of the sphere is a circle, the projected radius r and center
(u0, v0) can be obtained by pointing out three points over the circle contour (see figure 5.1). From this
information, the surface normal vector at every image pixel n(i, j) is given by equation 5.4: 1

n(i, j) =




u−u0

r
v−v0

r

−
√

1 −
(

u−u0

r

)2 −
(

v−v0

r

)2


 , (5.4)

1 Observe that the z component of sphere surface normal vectors is negative because a viewer-oriented coor-
dinate system is assumed (section 4.1).
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where (u, v) is the projection of the scene point (x, y, z) onto the image plane. Under orthographic
projection, (u, v) happen to be equal to (x, y) and to (i, j).

5.1.2 Estimation of the lighting direction

If the light coming from the directional light source is assumed distant, s(i, j) = (sx(i, j), sy(i, j), sz(i, j))
turns out to be approximately constant throughout the scene. In this way:

cos θ(i, j) =
u − u0

r
sx +

v − v0

r
sy −

√
1 −

(
u − u0

r

)2

−
(

v − v0

r

)2

sz . (5.5)

s can now be determined from the intensity pattern of the sphere in the image. In effect, obviating the
spatial noise for the moment (i.e. K(i, j) = 1 and µdc(i, j) = EI [µdc]), the isophote curve of intensity
L of the average image (i.e. µDc(i, j) = L), without considering the background, is given by:

L = αc +


u − u0

r
sx +

v − v0

r
sy −

√
1 −

(
u − u0

r

)2

−
(

v − v0

r

)2

sz


 βc , (5.6)

where αc = (Laρb)
cAc + EI [µdc]A

c and βc = (Ldρb)
cAc.

Equation 5.7 can now be obtained reordering equation 5.6:

(
u − u0

r

)2 (
s2

x + s2
z

)
+

(
v − v0

r

)2 (
s2

y + s2
z

)
+ 2

(
u − u0

r

)(
v − v0

r

)
sxsy

− 2C
(

u − u0

r

)
sx − 2C

(
v − v0

r

)
sy + C2 − s2

z = 0 , (5.7)

where C = L−αc

βc . If variables p and q are defined to be p = u−u0

r and q = v−v0

r , then equation 5.7

defines a rotated conic in terms of the variables p and q. 2

The conic expressed in equation 5.7 has the following properties:

(1) If equation 5.7 is put in the form of equation 5.8:

(p q)

(
a c
c b

)(
p
q

)
+ 2(d e)

(
p
q

)
+ f = 0 , (5.8)

then the matrix which defines the quadratic form associated to the conic is given by:

(
a c
c b

)
=

(
s2

x + s2
z sxsy

sxsy s2
y + s2

z

)
, (5.9)

whose eigenvalues are λ1 = s2
x + s2

y + s2
z = 1 and λ2 = s2

z. Since both are positive (i.e. have the
same sign), the conic results to be an ellipse.

(2) Since λ1 > λ2 and λ1 and λ2 are inversely proportional to the square of the lengths of the ellipse
axes [4], λ1 is always related to the shortest axis.

(3) The coordinates of the center of the ellipse (p0, q0) are given by the solution of the system of
simultaneous equations 5.10 [251]:

a p0 + c q0 + d = 0
c p0 + b q0 + e = 0

}
(5.10)

which, for the particular values of the ellipse parameters a, b, . . . , e (equations 5.7 and 5.8), result
to be p0 = Csx and q0 = Csy.

2 Note that if, instead of introducing variables p and q, equation 5.7 is reordered in terms of variables u and
v, a conic over the plane U − V is also found.
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Mark 3 points defining a circle surrounding the calibration object

(a) (b)

Fig. 5.1. Example of lighting orientation estimation (I): (a) calibration image; (b) circumference defining the
sphere projection contour, overimposed over the calibration image (introduced manually by the user).
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Fig. 5.2. Example of lighting orientation estimation (II): (1st row) from left to right, sets of (p, q) points for
which L = 167, 137, 107 and 77 in the calibration image shown in figure 5.1; (2nd row) ellipses fitting the above
sets of points. (In all the plots the ⊕ sign represents the origin of coordinates.)

(4) Besides, the slopes m1 and m2 of the axes of the ellipse are the roots of equation 5.11 [251]:

cm2 + (a − b)m − c = 0 , (5.11)

which, for the particular values found for a, b and c, result to be m1 =
sy

sx
, for the shortest axis

(i.e. the one related to λ1), and m2 = − sx

sy
, for the largest axis.

(5) Using properties (3) and (4), the expression, in parametric form, corresponding to the straight line
containing the shortest axis of every ellipse results to be (p, q) = C(sx, sy) + t(sx, sy), where t is
the parameter.

(6) Finally, the centers of the ellipses change from one isophote curve to the next since they all depend
on C, but the straight lines containing the corresponding shortest axes are co-linear and can be
expressed as (p, q) = t′(sx, sy). All the centers are thus aligned over this straight line, which in
particular contains the origin of coordinates, i.e. if t′ = 0 then (p, q) = (0, 0).

Summing up the previous properties, the different isophote curves of the sphere projection define
ellipses over the plane P − Q whose centers and shortest axes all lie on the straight line passing
through the origin of coordinates (0, 0) and have slope

sy

sx
. 3

3 Regarding the plane U − V, the slope of the straight line containing the centers and the shortest axes point
towards the center of the sphere projection (u0, v0).
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By way of illustration of the aforementioned, the first row of figure 5.2 shows the sets of points of
the calibration image of figure 5.1(a) for which L is, from left to right, 167, 137, 107 and 77. As can
be observed, those sets clearly exhibit an elliptic shape. The fitting ellipses are given in the second
row of figure 5.2. Although any conic-fitting method can be of use in this stage, it must be taken into
account that the conic to fit is always an ellipse and that, depending on the light orientation, part of
the ellipse lies in the hidden part of the sphere (i.e. the ellipse can appear partially occluded). Because
of its performance against occlusions [49], the ellipse-fitting-specific method by Fitzgibbon et al. [50]
is preferred.

The first row of figure 5.2 is also useful to illustrate the effect of noise in the isophote curves
corresponding to the calibration object. Because noise makes pixels to “jump” from their original
intensity level L′ to a different one L′′, in the noisy image, the set of pixels having, say, intensity L
mix pixels from different original intensities and, therefore, isophotes. As a result, the isophotes of the
noisy image consist of elliptical clouds of separated points instead of more or less continuous curves,
which complicates estimating the correct ellipse in each case. However, the set of pixels with intensities
in the range [L − ∆/2, L + ∆/2], for ∆ small, is likely to contain all the pixels originally belonging to
the isophote of intensity L, plus some other pixels corresponding to isophotes of adjacent intensities
in the noiseless image. Experimental results have shown, however, that for ∆ = 4 the contaminating
pixels do not affect the fitting so as to significantly distort the ellipse parameters. Nevertheless, the
sets of points of figure 5.2 correspond to ∆ = 2.

Now, on the basis of the previous properties, at least the two following methods are of application
for computing the tilt τ and slant σ of s, by which s = (sin σ cos τ, sin σ sin τ, cos σ):

(1) TEAV method (Tilt Estimation by AVeraging). Given λ1 and λ2 coming from the ellipse fitting

a particular isophote curve, sz = −
√

λ2

λ1

(4 and σ = cos−1 sz. On the other hand, given the

corresponding (p0, q0) or m1,
q0

p0
= m1 =

sy

sx
= tan τ , being determined the precise quadrant of τ

by the signs of (p0, q0) = (Csx, Csy), since C = L−αc

βc ≥ 0.
Theoretically, the isophote curves corresponding to all the possible intensities L should all provide
the same estimation of s. However, due to image noise and despite the fusion of several isophotes
of the noisy image to estimate s, typically one has as many estimates ŝ as isophote curves have
been examined. Therefore, a problem of aggregation of the different ŝL’s to get a final vector arises.
In TEAV, the tilt and slant angles are determined by averaging the different estimations τ̂L and
σ̂L computed for every L as indicated before. Although the different ŝL’s tend to be quite close
to one another, the possibility of outliers should not be discarded and means should be provided
to overcome them. Solutions such as the Minimum Volume Ellipsoid (MVE) estimator [241] or a
Mean-Shift based technique [27,30] would be useful at this point.

(2) TECA method (Tilt Estimation by Centers Alignment). From a theoretical point of view, all the
ellipse centers (pL

0 , qL
0 ) lie on a straight line passing through the origin whose slope coincides with

the tilt of s. On the basis of this property, this second method estimates first all the ellipse centers
and then fits them by a straight line forced to pass through point (0, 0). Once this line is known, the
ellipse centers are projected onto the fitted line and the sphere projection isophote curves are again
fitted by an ellipse, but, now, constraining their centers to be the projected ones, to ensure all of
them effectively lie on a common line, while the slope of the shortest axis is also imposed to be the
slope of the straight line found. To this end, this knowledge about the ellipse is introduced into the
equation of a rotated non-centered ellipse. According to the formulation of table 5.1, tanφ = q0

p0
,

the slope of the shortest axis. Now, using 1 + tan2 φ = sec2 φ:

4 Observe that, because almost all curve fitting techniques perform the fitting solving an eigenvalue prob-
lem [310], the curve parameters are obtained scaled so that

√
a2 + b2 + ... + f2 = 1. Consequently, in this

particular case, sz cannot be determined directly from λ2.
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Table 5.1. Expression corresponding to a non-centered ellipse whose axes are a and b units in length, its center
is (p0, q0) and the axis of length a is rotated φ degrees. (cφ and sφ stand, respectively, for cos φ and sin φ.)

NON-ROTATED ELLIPSE:

(
p−p0

a

)2
+

(
q−q0

b

)2
= 1

⇓
(p − p0, q − q0)

(
1

a2 0
0 1

b2

) (
p − p0

q − q0

)
= 1

ROTATED ELLIPSE: (an angle φ with respect to P axis)

(p − p0, q − q0)

(
cφ −sφ
sφ cφ

) (
1

a2 0
0 1

b2

) (
cφ sφ
−sφ cφ

) (
p − p0

q − q0

)
= 1

⇓
(p − p0)

2
(

c2φ

a2 + s2φ

b2

)
+ 2 (p − p0) (q − q0)

(
sφcφ

a2 − sφcφ

b2

)
+ (q − q0)

2
(

s2φ

a2 + c2φ

b2

)
= 1

cos2 φ =
p2
0

p2
0 + q2

0

(5.12)

sin2 φ =
q2
0

p2
0 + q2

0

(5.13)

sinφ cos φ =
p0q0

p2
0 + q2

0

(5.14)

After the corresponding substitutions and some reordering, equation 5.15 is obtained, from which 1
a2

and 1
b2 can be derived for every isophote curve by least squares, using the corresponding coordinates

(p, q) of the points of the isophote curve. Since the squares of the axes lengths a2 and b2 are inversely

proportional to, respectively, λ1 and λ2, sz = −
√

λ2

λ1
= −

√
|K/b2|
|K/a2| = −

√
a2

b2 (K is a constant which

derives from the parameters of the ellipse [4]). However, in order to get a correct solution, values
1
a2 and 1

b2 should be constrained to be positive. To this end, non-negative least squares [138] could
be used.

(
1

a2

)
P︷ ︸︸ ︷[

p2
0

p2
0 + q2

0

(p − p0)
2 + 2

p0q0

p2
0 + q2

0

(p − p0)(q − q0) +
q2
0

p2
0 + q2

0

(q − q0)
2

]

+

(
1

b2

)
Q︷ ︸︸ ︷[

q2
0

p2
0 + q2

0

(p − p0)
2 − 2

p0q0

p2
0 + q2

0

(p − p0)(q − q0) +
p2
0

p2
0 + q2

0

(q − q0)
2

]
= 1 .

(5.15)

A simpler solution consists in transforming equation 5.15 into equation 5.16, using now variables

P and Q as defined in equation 5.15, and determining the slope −a2

b2 of the resulting straight line.

P = −a2

b2
Q + a2 . (5.16)

To this end, points (P,Q) can be fitted to the straight line to which the sum of orthogonal distances
d is minimum. According to figure 5.3, given n as the unit normal vector of the considered straight
line:
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d if i

n
( P i , Q i )

( P , Q )
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Q

P

Fig. 5.3. Straight line fitting using orthogonal distances. In the figure, n is the vector normal to the straight
line, while (P , Q) is the center of mass of the cloud of points.

min
∑

i

d2
i = min

∑

i

(
‖(Pi, Qi) − (P ,Q)‖ cos φi

)2

= min
∑

i

([
(Pi, Qi) − (P ,Q)

]
n

)2

= min nT




P1 − P Q1 − Q
...

...
PM − P QM − Q




T 


P1 − P Q1 − Q
...

...
PM − P QM − Q


 n

= min nT Sn . (5.17)

Since the matrix S is real, symmetric and, in general, positive-definite, it is diagonalizable, all
the eigenvalues are real and the corresponding eigenvectors are orthogonal [33]. Consequently, the
solution to equation 5.17 is the lowest eigenvalue of S, because nT Sn = nT λn = λ, provided n

is a unit vector; hence, n = (nP , nQ) is the eigenvector of S associated to the lowest eigenvalue.
Accordingly, the vector v = (vP , vQ) in the same direction as the straight line is the eigenvector
of S related to the largest eigenvalue. However, since the slope vP

vQ
of the fitting straight line must

satisfy that vP

vQ
= −a2

b2 < 0, both components of vector n must have the same sign. That is to say,

the problem posed through equation 5.17 must be completed in the following way:

min nT Sn

constrained by nP nQ = k ≥ 0
(5.18)

where the product nP nQ can be expressed in matrix form as follows:

nP nQ = nT

C︷ ︸︸ ︷(
0 1

2
1
2 0

)
n . (5.19)

In this way, the problem can be solved introducing the Lagrange multiplier λ and differentiating
the Lagrangian function of equation 5.20 to reach the system of simultaneous equations 5.21.

L = nT Sn + λ
(
nT Cn − k

)
(5.20)

Sn =

ν︷ ︸︸ ︷
(−λ)Cn (5.21a)

nT Cn = k ≥ 0 (5.21b)

Substituting Cn from equation 5.21a into equation 5.21b, the latter becomes into 1
ν nT Sn = k.

Since S is positive-definite, nT Sn > 0,∀n, and, therefore, only strictly positive eigenvalues ν of
the generalized eigenproblem of equation 5.21a are solution of the initial problem. Because of the
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Table 5.2. Example of lighting orientation estimation (III): (a) intermediate and final results for the estimation
method based on the direct computation of s from the fitting ellipses (TEAV method); (b) intermediate and
final results for the estimation method based on the computation of s from corrected ellipses (TECA method).

(a)

L a b c d e f ŝ
L

167 +0.66 +0.54 +0.18 -0.37 -0.30 +0.15 (+0.56,+0.40,-0.73)

137 +0.69 +0.56 +0.21 -0.31 -0.25 -0.06 (+0.57,+0.43,-0.70)

107 +0.69 +0.58 +0.20 -0.22 -0.19 -0.24 (+0.56,+0.43,-0.71)

77 +0.68 +0.57 +0.18 -0.14 -0.13 -0.38 (+0.55,+0.40,-0.73)

lighting direction → (+0.56,+0.41,-0.72)

(b)

L a b c d e f p̂L
0 q̂L

0

167 +0.66 +0.54 +0.18 -0.37 -0.30 +0.15 +0.46 +0.40

137 +0.69 +0.56 +0.21 -0.31 -0.25 -0.06 +0.35 +0.32

107 +0.69 +0.58 +0.20 -0.22 -0.19 -0.24 +0.25 +0.24

77 +0.68 +0.57 +0.18 -0.14 -0.13 -0.38 +0.16 +0.19

τ̂L → +42.803646 ◦

L a b c d e f σ̂L ŝ
L

167 +0.61 +0.59 +0.18 -0.35 -0.32 +0.14 +137.676178 ◦ (+0.49,+0.46,-0.74)

137 +0.65 +0.61 +0.21 -0.29 -0.27 -0.06 +135.184841 ◦ (+0.52,+0.48,-0.71)

107 +0.65 +0.62 +0.21 -0.22 -0.20 -0.24 +135.396176 ◦ (+0.52,+0.48,-0.71)

77 +0.64 +0.61 +0.18 -0.14 -0.13 -0.38 +138.086710 ◦ (+0.49,+0.45,-0.74)

lighting direction → (+0.50,+0.47,-0.73)

symmetry of S and C and the positive-definiteness of S, the signs of the eigenvalues of matrix C
coincide with the signs of the eigenvalues of the generalized eigenproblem of equation 5.21a, accord-
ing to a lemma by Fitzgibbon et al. [50]. Since the eigenvalues of C are −0.5 and 0.5, the problem
posed through equation 5.18 is guaranteed to have always solution. Solving equation 5.21a through
its characteristic polynomial, the corresponding eigenvalues turn out to be ν1 = 2

(
S12 +

√
S11S22

)

and ν2 = 2
(
S12 −

√
S11S22

)
, where only ν1 > 0. Substituting ν1 into equation 5.21a, the nor-

mal vector results to be n =
(√

S22

S11+S22
,
√

S11

S11+S22

)
, so that v =

(
−

√
S11

S11+S22
,
√

S22

S11+S22

)
and

a2

b2 =
√

S11

S22
.

Similarly to TEAV, every isophote curve L provides a possibly different estimation ŝL
z of sz.

Likewise, taking the average of the individual ŝL
z ’s, with special care of outliers, is suggested.

To illustrate both methods, the lighting orientations ŝ
L estimated from everyone of the sets of

points presented in the upper row of figure 5.4 are given in the corresponding row of tables 5.2(a)
and 5.2(b), while the lower rows of each table gives the final orientation. The second row of figure 5.4
shows the ellipses directly fitting the sets of points given in the first row. The third row of the same
image shows the ellipses corrected by aligning their centers. The straight line fitting those centers is
given in figure 5.5(a), as well as the alignments of the original centers. Finally, figure 5.5(b) compares
both sequences of ellipses.

At this point, a brief discussion about the goodness of both methods is noteworthy. On the one
hand, note that TEAV depends more heavily on the reliability of the ellipse fitting method, since a
priori there is no guarantee that either the ellipse axes or the ellipse centers appear aligned with one
another; the final aggregation of tilt and slant angles by clustering/averaging is, thus, compulsory in
order to obtain a final estimation of s. On the other hand, the second approach takes specifically
into account the alignment of the different ellipses. The fitting of the corresponding straight line will,
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Fig. 5.4. Example of lighting orientation estimation (IV): (1st row) from left to right, sets of (p, q) points for
which L = 167, 137, 107 and 77 in the calibration image shown in figure 5.1; (2nd row) ellipses directly fitting
the above sets of points (TEAV method); (3rd row) corrected ellipses on the basis of the alignment of their
centers (TECA method). (In all the plots the ⊕ sign represents the origin of coordinates.)
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Fig. 5.5. Example of lighting orientation estimation (V): (a) centers of the ellipses shown in table 5.2 (×),
straight line passing through (0, 0) fitting them (dotted line) and projection of ellipse centers over the fitting
line (+); (b) sequence of direct-fitting ellipses (solid line, centers appear as ¤) and corrected ellipses (dashed
line, centers appear as ⋄).

however, be better or worse conditioned depending on how concentrated the ellipse centers are. None of
the methods seems to be the best one beforehand. What is true is that their output need not coincide
in the case of real noisy images, as can be deduced from the results given in table 5.2, where, only
considering four values of L, the final orientations estimated by both methods differ in 4.50◦.

5.1.3 Final considerations

Once s is known and n(i, j) has been computed for every pixel within the circle enclosed by the
circumference defined by r and (u0, v0), using equation 5.4, mb(i, j) can be accordingly estimated, as
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well as the lighting strengths Lc
aAc and Lc

dA
c by fitting the corresponding pairs (mb,Emb

[µDc ]) by a
straight line. Since the values of r and (u0, v0) determine the value of s and n(i, j), and consequently
of mb(i, j), the accuracy of the estimation of the lighting parameters depends on how well the sphere
projection data have been calculated. In fact, if they are obtained by means of three points over the
contour of the sphere projection, as suggested at the beginning of this section, it can so happen that
several executions of the calibration method over the same image yield different values for s, Lc

aAc

and Lc
dA

c because the user was not able to select all times the same circumference. This is because
of, on the one hand, the spatial discretization inherent to real cameras and, on the other hand, the
associated spatial aliasing. Both facts make uncertain where the real contour lies, what suggests using
a sort of optimization strategy by which those parameters leading to the best estimation are chosen.
Given the fact that, in the end, the sphere parameters are needed to estimate the lighting strengths
through a linear model which relates mb with the observations Emb

[µDc ], it seems reasonable to look
for the sphere parameters leading to the lowest fitting error to the model. Accordingly, the user is
asked to point out two circumferences so that one is completely included into the other and the right
contour is most likely to be among both. A sample of all the circumferences among them are then
evaluated by means of an elitist genetic optimization strategy [170,171], from which the circumference
leading to the best fitting is kept. That is to say, from an initial guess about where the right circular
contour lies, several other circumferences are generated using Gaussian mutation from the best fitting
at the previous iteration, ensuring that those new circumferences are within the limits determined by
the limiting circumferences. This iterative process is stopped after a certain number of generations
without improvement in the fitting error.

5.2 Estimation from Colour Images

When several colour channels are available, applying the procedure described in section 5.1 to every
channel separately gives rise to several estimations of vector s and an estimation of Lc

aAc and Lc
dA

c

for every colour channel. Since s should be the same for all the colour channels, the estimations ŝ
L,c

corresponding to the different colour channels should all contribute to the computation of the final
ŝ, instead of aggregating over every channel separately, irrespectively of the use of TEAV or TECA
methods.

On the other hand, the availability of colour data gives rise to several groups of pairs (mb,Emb
[µDc ]),

one for every colour channel, which are fitted to determine the illumination strengths within every
colour band. As a consequence, a number of fitting errors appear, as many as colour channels. In order
to ensure the best matching with the theoretical linear relationships between mb and Emb

[µDc ] for
all c, the objective function is redefined as the maximum of the fitting errors of the different colour
channels available. In this way, the same optimization procedure described in section 5.1 can also be
applied to colour calibration images.

5.3 Error of Assuming Orthographic Projection

The method presented in section 5.1 assumes orthographic projection for estimating the lighting pa-
rameters. This assumption affects the computation of the surface normal vectors of the sphere and,
therefore, becomes crucial as for the validity of the estimations which can be obtained. In order to
throw some light about the sort of error this assumption can lead to, this section deals with the de-
viation which can arise between the true normal vector n =

(
x−x0

R , y−y0
R , z−z0

R

)
, for a sphere with

parameters (x0, y0, z0;R), and the approximation n̂ =

(
u−u0

r , v−v0

r ,−
√

1 −
(

u−u0

r

)2 −
(

v−v0

r

)2
)

.

Assuming a pin-hole camera, the projection (u, v) of a point in the sphere surface (x, y, z(x, y))
onto the image plane is given by:

(u, v) = (x, y)
f

z(x, y)
, (5.22)
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Fig. 5.6. Projection of sphere points under perspective.

where f is the focal length of the camera. Accordingly, the projection of the center of the sphere is

given by
(
u0 = x0

f
z0

, v0 = y0
f
z0

)
(see figure 5.6).

Taking as a measure of the error the angle δ between n and n̂:

δ = cos−1 n · n̂ = cos−1 (nxn̂x + nyn̂y + nzn̂z) , (5.23)

since both are unit vectors. In the following, equations 5.24, 5.25 and 5.26 develop expressions for the
different terms in the sum of equation 5.23:

nxn̂x =

(
x − x0

R

) (
u − u0

r

)
=

(
x − x0

R

) (
x z0

z − x0

R

)
(5.24)

nyn̂y =

(
y − y0

R

) (
v − v0

r

)
=

(
y − y0

R

)(
y z0

z − y0

R

)
(5.25)

nzn̂z =
√

1 − n2
x − n2

y

√
1 − n̂2

x − n̂2
y

=

√
1 −

(
x − x0

R

)2

−
(

y − y0

R

)2
√

1 −
(

x z0

z − x0

R

)2

−
(

y z0

z − y0

R

)2

(5.26)

In view of equations 5.24-5.26, it is clear that δ depends on the parameters defining the calibration
sphere (x0, y0, z0) and R, but not on the imaging sensor, say the focal distance f . Besides, the magnitude
of the error depends on the precise point of the sphere under consideration. In particular, notice that
if x = 0 and y = 0 or z = z0, then n = n̂ and δ = 0. In general, the error is minimum at image points
within the sphere projection closest to the image center and at the border of the sphere projection.

Figure 5.7 shows some plots for the maximum and average δ across the sphere, varying R, z0, x0

alone and x0 = y0 simultaneously (a plot for y0 alone is not included since it would be identical to the
one for x0 alone due to the symmetry of the sphere). In all cases, a parameter is varied and the rest
keep constant to R = 0.05 m, z0 = 3 m, x0 = 0 m and y0 = 0 m. As can be seen, angle δ increases
as the camera approaches the sphere (z0 decreases), the size of the sphere increases (R is enlarged) or
the center of the sphere moves away from the center of the image plane (x0 and/or y0 shifts from the
image plane center).

Although angle δ is important for measuring the deviations in the approximated surface normal
vectors, what is most relevant is their effect over cos θ = n · s. To evaluate ∆ cos θ = cos θ − cos θ̂ =
(n− n̂) ·s, s must be taken into account. The plots of figure 5.8 show, for the same sphere parameters
as for figure 5.7 and as a function of the tilt τ of s, the percentage of sphere pixels for which the

relative error |∆ cos θ|
cos θ × 100 is below 5%. As can be observed, the error in the estimation of cos θ does

not seem to change much as the tilt τ varies. As already discussed before, the smaller the sphere, the
closer its center to the optical axis and the farther away, the better for the estimation of cos θ.
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Fig. 5.9. Estimation errors for the suggested calibration setup, R = 0.05 m, x0 = 0 m, y0 = 0 m and z0 = 3
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purposes); (b) histogram of δ values; (c) percentage of sphere points for which the relative error |∆ cos θ|
cos θ

× 100
is below 5% for different values of the tilt τ of the illumination direction s.

Given those results, R ≈ 0.05 m, z0 ≈ 3 m, x0 ≈ 0 m and y0 ≈ 0 m seem quite reasonable
calibration conditions, because they are either feasible and the related estimation error is below 5%
for more than 85% of the sphere pixels. To finish this section, figure 5.9 shows more detailed plots
about the estimation errors for the calibration conditions suggested. On the one hand, under those
conditions, δ is always below 1.07◦, while its mode is around 0.8◦. On the other hand, it is worth noting
that the error is higher as the border of the sphere is approached, so that it seems advisable not to
consider pixels near the border of the sphere projection when using the estimation method based on
orthographic projection.

5.4 Extension to Perspective Projection

As has been seen in the orthographic projection case, the estimation of the lighting strengths requires
knowledge about the light source direction and the corresponding surface normal vectors at several
image points of the sphere projection. When the orthographic projection assumption is not valid
and central projection must be used, determining both unknowns is still possible although requires a
previous stage for obtaining some parameters of the calibration sphere. The new procedure is described
in the following.

5.4.1 Projection of the sphere

Under central projection, the projection of the sphere over the image plane is not always a sphere. In
effect, the shape of the projection of the sphere results from the intersection of the image plane with the
circular cone depicted in figure 5.10, whose vertex coincides with the center of projection. Therefore,
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Fig. 5.10. The projection of a sphere over the image plane, under perspective projection, comes from the
intersection between the circular cone of the figure and the image plane.

the projection of the sphere over the image plane is a conic since it is the intersection between a plane
and a cone. Its exact parameters are derived next.

On the one hand, all the points over the sphere surface satisfy equation 5.27:

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2 , (5.27)

where, as before, (x0, y0, z0;R) are the parameters of the sphere.
On the other hand, the straight line connecting any point over the sphere surface (x, y, z) and the

center of projection (0, 0, 0) can be expressed, assuming a pin-hole camera model, as equation 5.28:

(x, y, z) = t(u, v, f) , (5.28)

where, as in section 5.1, (u, v) is the projection of (x, y, z) onto the image plane (i.e. the intersection
between the aforementioned straight line and the image plane) and f is the focal distance of the camera.
Notice that (u, v) can no longer be assimilated to discrete coordinates over the image plane in contrast
to orthographic projection.

Now, substituting equation 5.28 into equation 5.27 and reordering, equation 5.29 results:

a︷ ︸︸ ︷(
u2 + v2 + f2

)
t2

b︷ ︸︸ ︷
− 2(ux0 + vy0 + fz0) t +

c︷ ︸︸ ︷
x2

0 + y2
0 + z2

0 − R2 = 0 , (5.29)

from which t is given as −b±
√

b2−4ac
2a . The outer points of the sphere projection correspond to the points

of the sphere surface for which the straight line of equation 5.28 touches the sphere in just one point,
i.e. b2 − 4ac = 0. This fact leads to equation 5.30, which defines the wanted conic expressed in terms
of u and v:

(
R2 − y2

0 − z2
0

)
u2 +

(
R2 − x2

0 − z2
0

)
v2 + 2x0y0uv + 2fx0z0u + 2fy0z0v + f2

(
R2 − x2

0 − y2
0

)
= 0 .

(5.30)

Due to their importance, a number of properties of this ellipse are discussed next:

(1) The eigenvalues of the matrix defining the quadratic form associated to the conic,

(
R2 − y2

0 − z2
0 x0y0

x0y0 R2 − x2
0 − z2

0

)
, (5.31)
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can be shown to be λ1 = R2 − z2
0 and λ2 = R2 − x2

0 − y2
0 − z2

0 . Since z0 is always larger than R
—otherwise, part of the sphere would be inside the camera or behind it—, both eigenvalues are
negative (i.e. have the same sign) and therefore the conic results to be in general an ellipse. Only
when the center of the sphere is contained in the optical axis (i.e. x0 and y0 are both 0) the ellipse
turns out to be a circumference. Note that this agrees with the discussion in the previous section
about the error of assuming orthographic projection: the farther the center of the sphere with
regard to the optical axis, the greater the error in the computation of the surface normal vectors,
because the sphere projection adopts an elliptic shape and is increasingly less circular.

(2) Since λ1 < λ2 and λ1 and λ2 are inversely proportional to the square of the lengths of the ellipse
axes [4], λ1 is always related to the largest axis.

(3) Again using the inverse proportionality between the eigenvalues λ1 and λ2 and the squares of the
ellipse axes lengths, a2 = |K/λ1| and b2 = |K/λ2| (K is once more a constant which derives from
the parameters of the ellipse [4]), a relationship can be established between axes lengths a and b:

b2

a2
=

|K/λ2|
|K/λ1|

=
λ1

λ2
=

R2 − z2
0

R2 − z2
0 − x2

0 − y2
0

, (5.32)

which gives rise to:

b = a

√√√√ 1 −
(

z0

R

)2

1 −
(

z0

R

)2 −
(

x0

R

)2 −
(

y0

R

)2 . (5.33)

(4) Using equation 5.10 and the particular parameters of the ellipse, its center can be shown to be

(u0, v0) = f
z2
0

z2
0−R2 (x0, y0).

(5) From equation 5.11 and, again, the particular parameters of the ellipse, the slope of its largest axis
(i.e. the one related with λ1) turns out to be y0

x0
, while the one for the shortest axis is given by

−x0

y0
.

(6) Using properties (4) and (5), the expression for the straight line containing the largest axis in

parametric form is given by (u, v) = f
z2
0

z2
0−R2 (x0, y0) + t(x0, y0), where t is the parameter.

(7) Finally, this straight line contains the origin of coordinates, i.e. if t = −f
z2
0

z2
0−R2 then (u, v) = (0, 0).

In other words, the largest axis of this ellipse is always pointing towards the center of the image.

By way of illustration, figure 5.11 shows how the projection of the sphere in different positions in
space would look like according to the previous properties. As predicted, when the center of the sphere
lies over the optical axis, the projection is a circumference. As the sphere is displaced from this position,
it leaves the circular shape, enlarging the axis pointing towards the image center. Finally, if the sphere
is moved along a circular path centered on the optical axis, i.e. x2

0 + y2
0 = K2, the eccentricity of the

ellipse is always the same, though not its orientation.

5.4.2 Estimation of surface normal vectors

The surface normal vector n(x, y, z) for a sphere centered at (x0, y0, z0) and having radius R is given
by equation 5.34:

n(x, y, z) =




x−x0

R
y−y0

R

−
√

1 −
(

x−x0

R

)2 −
(

y−y0

R

)2


 . (5.34)

Given (x, y) = z
f (u, v):

nx =

z
f u − x0

R
=

u

f

z

R
− x0

R
(5.35)

ny =

z
f v − y0

R
=

v

f

z

R
− y0

R
(5.36)
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Fig. 5.11. Appearance of the projections of the sphere under different positions with regard to the camera
optical axis. (The eccentricity of the ellipses has been exaggerated to improve the illustration of their properties.)

In order for these equations to be useful, f , z
R , x0

R and y0

R should be known beforehand. Although
they could be derived after a geometric calibration of the camera, they can also be obtained from the
ellipse fitting the contour of the sphere projection. On the one hand, z

R is an array of values of the
same size as the sphere projection which can be computed using the equation of the sphere surface,
which is satisfied by all the points being projected into the image plane:

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2 . (5.37)

If, now, x = u z
f and y = v z

f are substituted and the whole equation is divided by R2:

(
u

f

z

R
− x0

R

)2

+

(
v

f

z

R
− y0

R

)2

+
( z

R
− z0

R

)2

= 1 , (5.38)

then, reordering equation 5.38, a second-order polynomial in z
R is obtained as a function of u, v, f ,

x0

R , y0

R and z0

R :

[(
u

f

)2

+

(
v

f

)2

+ 1

] ( z

R

)2

− 2

[
u

f

x0

R
+

v

f

y0

R
+

z0

R

]( z

R

)
+

[(x0

R

)2

+
(y0

R

)2

+
(z0

R

)2

− 1

]
= 0 .

(5.39)

Then, z
R can be computed for all the image points (u, v) covering the sphere projection, if f , x0

R , y0

R
and z0

R are known.
To determine f , x0

R , y0

R and z0

R , two methods are of application:

• On the one hand, from equation 5.30, the parameters of the ellipse are:
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as a function of f : (a) ellipse corresponding to the
projection of the sphere over the image plane; (b) view of (a) after rotating the viewpoint so as to put it on
top of the ellipse major axis.

a = k0(R
2 − y2

0 − z2
0)

b = k0(R
2 − x2

0 − z2
0)

c = k0x0y0

d = k0fx0z0

e = k0fy0z0

f = k0f
2(R2 − x2

0 − y2
0)





(5.40)

where k0 is just a scaling which is usually incorporated to the fitted parameters by the fitting
method, most times being

√
a2 + b2 + ... + f2. If they all are divided by R2,

a = k′
0

(
1 −

(
y0

R

)2 −
(

z0

R

)2
)

b = k′
0

(
1 −

(
x0

R

)2 −
(

z0

R

)2
)

c = k′
0

x0

R
y0

R
d = k′

0f
x0

R
z0

R
e = k′

0f
y0

R
z0

R

f = k′
0f

2
(
1 −

(
x0

R

)2 −
(

y0

R

)2
)





(5.41)

where k′
0 = k0/R2, then a system of 6 non-linear equations in 5 unknowns is obtained. It can easily

be shown that f , x0

R , y0

R and z0

R can all be determined from this set of equations in all cases except
when x0 = 0 and y0 = 0. In such a case, a and b turn out to be equal, and c, d and e are all 0,
so that the system reduces to two equations and three unknowns. In this situation, z0

R can only be
determined if the focal distance f or k′

0 are known.
• On the other hand, if the focal distance f is available, either from the lens/camera manufacturer

or from a previous geometric calibration of the camera, then the remaining variables x0

R , y0

R and
z0

R can be put as a function of f and some information coming from the ellipse fitting the contour
of the sphere projection, which is derived next.
First of all, given the relationship between the center of the sphere and the center of the ellipse
(x0, y0) = z0

f (u0, v0), if both equations are divided by R, expressions for x0

R and y0

R are obtained in
terms of z0

R :
x0

R
=

u0

f

z0

R
,

y0

R
=

v0

f

z0

R
. (5.42)

Secondly, z0

R can be determined from some geometrical relationships between the sphere and its
projection over the image plane. These relationships are established in figures 5.12(a) and (b),
being the plane depicted in the latter the one containing the triangle (0, 0, 0)− (0, 0, f)− (u0, v0, f)
of figure 5.12(a). Over this plane, angle ψ happens to be:
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tan ψ =
R√

x2
0 + y2

0 + z2
0

=
r√

u2
0 + v2

0 + f2
, (5.43)

from which, substituting (x0, y0) by z0

f (u0, v0), the following expression for z0

R is obtained:

z0

R
=

f

r
. (5.44)

Now, since r = a cos χ (see figure 5.12(b)) and cos χ = f√
u2

0+v2
0+f2

(see figure 5.12(a)), z0

R is

definitely given by:
z0

R
=

√
u2

0 + v2
0 + f2

a
(5.45)

From these two methods, the first one, although theoretically correct tends to be quite unstable in
the sense that any error in the determination of the projection of the sphere gives rise to important
errors in the computation of f , x0

R , y0

R and z0

R . However, in the second one, slight mistakes when
indicating the projection contour gives rise to smooth deviations in the values taken by the remaining
variables because the given f constrains the values they can take.

5.4.3 Estimation of the lighting direction

Assuming again a distant light source, and using the expressions developed for nx and ny (equa-
tions 5.35 and 5.36), under perspective projection, cos θ results to be:

cos θ =

(
u

f

z

R
− x0

R

)
sx +

(
v

f

z

R
− y0

R

)
sy −

√
1 −

(
u

f

z

R
− x0

R

)2

−
(

v

f

z

R
− y0

R

)2

sz . (5.46)

In the same way as for deriving s for orthographic projection (equations 5.6 and 5.7), the isophote
curve of intensity L of the µDc image is given by:

L = αc +

[(
u

f

z

R
− x0

R

)
sx +

(
v

f

z

R
− y0

R

)
sy −

√
1 −

(
u

f

z

R
− x0

R

)2

−
(

v

f

z

R
− y0

R

)2

sz


βc ,

(5.47)

where, again, αc = (Laρb)
cAc + EI [µdc]A

c and βc = (Ldρb)
cAc.

Equation 5.48 can now be obtained reordering equation 5.47:

(
u

f

z

R
− x0

R

)2 (
s2

x + s2
z

)
+

(
v

f

z

R
− y0

R

)2 (
s2

y + s2
z

)
+ 2

(
u

f

z

R
− x0

R

)(
v

f

z

R
− y0

R

)
sxsy

− 2C
(

u

f

z

R
− x0

R

)
sx − 2C

(
v

f

z

R
− y0

R

)
sy + C2 − s2

z = 0 , (5.48)

where C = L−αc

βc . If variables p and q are defined, in this case, as p = u
f

z
R − x0

R and q = v
f

z
R − y0

R , then
equation 5.48 defines again a rotated conic in terms of the variables p and q. Notice, that, unlike the or-
thographic projection case, variables p and q do not define in this case a linear transformation common
to all the points over the sphere projection. However, after introducing variables p and q, equation 5.48
results to define exactly the same ellipse as in the orthographic projection case (equation 5.7), so that
all the properties discussed for that ellipse hold also here. Consequently, the lighting direction s can
be estimated, under central projection, using the same methods explained for orthographic projection,
after applying the transformation from (u, v) to (p, q).

To finish, remember that variables (u, v) do not represent discrete coordinates and that they must
be expressed in the same units as x0

R , y0

R , z
R and f , unlike the orthographic projection case, where all

the magnitudes —u, v, u0, v0 and r— naturally shared the same units and this issue did not care. If
x0

R , y0

R , z
R and f are expressed in, say, meters, then (u, v) must also be expressed in meters. The wanted

transformation can usually be obtained from the particular CCD size (1/4”, 1/3”, 1/2”, 2/3”, etc.)
and the number of cells for every dimension of the CCD array, both of which are normally available
from the camera manufacturer.
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Pseudocode 5.1 Lighting parameters estimation pseudocode for the perspective projection case.

(1) Determine the parameters of the elliptic projection of the calibration sphere over the image (ensure
u and v are expressed in the proper units)

(2) Estimate x0
R

, y0
R

, z0
R

and f from the elliptic shape of the projection
(3) Compute the array z

R
for all the points within the sphere projection using the values found for x0

R
,

y0
R

, z0
R

and f (ensure u and v are expressed in the proper units)
(4) Transform (u, v) co-ordinates to (p, q) co-ordinates (ensure u and v are expressed in the proper

units)
(5) Compute the lighting direction s considering the ellipses corresponding to several isophote curves

of the sphere projection image defined over the plane P −Q
(6) Obtain estimations for the ambient and directional lighting strengths fitting a straight line to points

(mb, Emb
[µDc ])

5.4.4 Summary of the extended estimation method

Pseudocode 5.1 sums up the estimation method for the central projection case. As in the orthographic
projection case, all the estimations are done on the basis of the indicated contour of the projection
of the sphere. In order to overcome the uncertainty on the true location of the projection, again an
optimization strategy is employed. First, two circles among which the true contour must lie are given,
together with a first guess about the ellipse corresponding to the real contour. Next, an elitist genetic
strategy is applied [170,171]. That is to say, several ellipses are generated by Gaussian mutation of the
parameters of the first guess. The one leading to the best fitting of points (mb,Emb

[µDc ]) is kept for
the next generation, where again other ellipses are produced by mutating it. After some generations
without improvement, the best ellipse is considered to be the best estimation of the real projection
contour. At all times, every ellipse is ensured to satisfy all the properties discussed before and be
enclosed within the limits of the two circumferences given at the beginning. Notice that, for being sure
that any ellipse satisfies all those properties is sufficient, given f , to specify a center (u0, v0) and one of
the axes, say the longest one, having length a; from them, the orientation of the ellipse φ is determined
as tan−1 v0

u0
, while b is computed using equation 5.33.

5.5 Previous Work

5.5.1 Illuminant orientation determination

The study of the detection of the illuminant direction from images can be traced back to the 1980’s.
Since then, several light source estimators have been proposed. The primary motivation behind the
work was to extend shape from shading algorithms to operate with less a priori information. In this
sense, [103] is an important source of information.

Among the classical approaches, some of them estimate the orientation of the illuminant on the
basis of reasonable assumptions about the statistical distribution of surface orientations, such as the
methods by Pentland [224], Lee and Rosenfeld [141] and Zheng and Chellappa [311]. The first approach
assumes that change in surface normal is distributed isotropically within a region, so that along any
image direction the mean change in the z component of the surface normal is zero and, consequently,
the mean image gradient along that direction depends only on the x and y components of the light
orientation vector in a proportional way. After some algebraic manipulation, the author shows how,
by means of a maximum likelihood analysis over several image directions, the tilt and the slant of
the direction of the illuminant can be estimated. The approach by Lee and Rosenfeld considers only
the derivatives along the x and y directions and approximates the local surface geometry by spherical
patches; hence, their method is also based on assuming an isotropic distribution of surface orientations.
Without a maximum likelihood analysis, the authors show that the expected values of image gradients
along the x and y directions are enough to compute the tilt of the illumination. Regarding the slant, it
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is estimated considering a sampling distribution of the slant of surface normals which takes into account
foreshortening and avoids self-shadowing, so that, using the expected values of intensity and intensity
squared, a non-linear equation on the slant is developed. Finally, Zheng and Chellappa present the most
sophisticated method together with a modification of Lee and Rosenfeld’s approach, incorporating self-
shadows into their calculations. In their own approach, they develop an expression for the slant based on
seventh-order polynomials approximating the intensity and intensity squared averages derived on the
basis of a statistical model of the distribution of surface normals taking into account self-shadows and
foreshortening [311]. As for the tilt, two methods are proposed: one of them assumes local spherical
patches and makes use of the maximum likelihood analysis of Pentland for deriving the tilt of the
illuminant on a pixel-by-pixel basis; the other approach uses shading information along image contours.

Another family of methods incorporate the estimation of the lighting parameters into optimization
schemes for the recovery of shape. In [24], Brooks and Horn present a method which alternately de-
termines the surface shape and the light source direction. The scheme is derived using a variational
approach and is extended to the case in which, in addition to a point light source, there is a dis-
tributed “sky” source. In fact, the iterative scheme is then extended to arbitrary reflectance maps.
The algorithms are simple to implement but do not enforce the integrability of the recovered surfaces
(i.e the requirement for a physically plausible shape). Using also a global optimization scheme, Leclerc
and Bobick propose in [139] a method computing first depth information equating the derivative of
the objective function to zero and solving for it using a conjugate gradient technique together with
a hierarchical structure to solve simultaneous equations. Once depth is known, the derivatives of the
objective function with respect to the three components of the light source direction is equated to
zero and the three simultaneous linear equations are solved. As initial data, their method uses depth
estimated from stereo. Later, a paper by Hougen and Ahuja describes a method based on Leclerc
and Bobick’s approach able to cope with several light sources located at infinity, although only their
strengths are estimated since intensity-independent reflectance maps are known in advance [105]. More
recently, Samaras and Metaxas proposed a scheme coupling, within an iterative process, their shape
estimation method with a method for light orientation estimation; this scheme improves shape esti-
mation on the basis of improvements on the light direction estimation and vice versa [247]. Due to the
characteristics of the method, the authors are able to incorporate more complex models of image for-
mation such as the Oren and Nayar extension to the Lambertian model [197]. The lighting estimations
compare favourably with the approach by Zheng and Chellapa, among others.

5.5.2 Estimation of the illuminant chromaticity

One of the classical problems in colour vision is the determination of the colour of the illumination.
Throughout the years, researchers have provided several methods for solving this problem, mainly for
achieving colour constancy or, in other words, the recovery of robust descriptors of scene objects from
colour images which are not affected by changes in the illumination. [95] constitutes an important
reference on the subject.

In [280], Tominaga and Wandell use the Dichromatic Reflection Model to predict that, under the
assumption of wavelength-independent specular reflectances, planes containing scene object pixels in
colour space intersect along a line that describes the spectral distribution of the light source. In [156],
Maloney and Wandell develop an algorithm able to recover the spectral power distribution (SPD) of
the illuminant together with the spectral reflectance at each location in the scene, on the assumption of
a single SPD illuminating the scene and that both the SPD of the illuminant and the surfaces spectral
reflectance are representable by finite dimensional linear models. Later, Forsyth extends and improves
the algorithm of Maloney and Wandell realizing that the colour of the illuminant is constrained by
the colours observed in the image because surfaces can reflect no more light than is cast on them [52].
Ho et al. present another algorithm for recovering the scene surfaces spectral reflectance and the
illuminant SPD assuming finite dimensional linear models and significant structural differences on
both. This allows the recovery of three parameters describing the illuminant and three more describing
the surface reflectance from a sampled reflected colour signal [97]. Lee proposes a method based on
the Dichromatic Reflection Model for estimating the chromaticity of the illuminant assuming that
the spectral composition of the interface reflectance is the same as the spectral composition of the
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illumination [143]. Using such a model, the locus of points in chromaticity space for a surface is
predicted to lie on a line connecting the chromaticity of the illuminant and the chromaticity of the
scene objects body reflection. While the original method needs the presence of several objects in the
scene, an improved version removes this constraint [144].

5.5.3 General comment on the use of a calibration object

All the above methods make the estimations over the whole image, or over selected areas of the image
under consideration, but do not use a calibration object. Although they are more attractive because
they do not require the calibration step and therefore can be applied to uncalibrated images, their
success on the correct estimation of the lighting orientation greatly depends on the strict matching
between the assumed image formation model and the image, and on the stability of the numerical
algorithm used for working out the different equations involved. With a calibration object, all the
lighting conditions can be controlled, avoiding specularities, inter-reflections and other undesirable
effects, which allows obtaining accurate estimations of the lighting parameters.

Some recent papers propose methods for estimating part of the lighting parameters by means of a
calibration-object-based approach. In the first one, Powell et al. present a strategy for estimating the
locations of several light sources without assuming parallel lighting [230]. The procedure involves the
use of a novel calibration object that consists of three specular spheres at known relative positions.
The 3D position of the specularities visible on their surfaces are used to triangulate for the light source
positions. In another publication, Zhang and Yang propose a method for the detection of the direction
of multiple illuminants based on a Lambertian sphere, looking for critical points in the scene, i.e. points
whose surface normal is orthogonal to the direction of at least one light source [309]. Light sources are
assumed distant and their strengths and directions are found by means of least-squares minimization
over a set of over-determined equations derived using the critical points found. Wang and Samaras
extended the work of Zhang and Yang allowing the use of any scene object of known geometry to
estimate lighting information, avoiding thus the utilization of a calibrating sphere [289]. Zhou and
Kambhamettu proposed another scheme for locating distant multiple light sources and estimating
their strengths from a pair of stereo images of a sphere in [312]. The material of the sphere surface is
required to be a dielectric so that both body and interface reflection takes place. Using the dependence
of the specular reflection on the viewpoint, the image of the sphere is separated into two images: one
with the specularities and the other one with the diffuse reflection. The first image is used to determine
the direction of the light sources while the second one provides their strengths. Finally, Bouganis and
Brookes proposed the V2R algorithm for, once more, distant multiple light source detection [19]. The
V2R algorithm uses a Lambertian sphere and is based again on the detection of the critical points
of the scene. The image of the sphere is first segmented into regions that are each illuminated by
a different sum of light sources, called virtual lights by the authors, using the critical points found.
Next, light source vectors containing either the direction of the virtual lights and their strengths are
determined by linear regression using all the points in each region. Individual light source vectors are
finally computed subtracting the virtual light source vectors of adjacent regions.

Despite the limitations of the lighting estimation methods proposed in this chapter as for the
number of light sources, several advantages make them attractive in single-source cases against multi-
source methods: (1) in general, its complexity is lower than the multi-source methods; (2) a previous
geometric calibration of the camera is not required and the estimation of the surface normal vectors
of the calibration sphere is embedded within the method itself; (3) all the image pixels belonging
to the sphere projection are used in the estimation of the lighting parameters; (4) no threshold or
parameter needs to be set up. Besides, the mathematical formulation of the method has been developed
taking into account a model of the operation of CCD cameras, which has allowed identifying the noise
sources corrupting digital pixel values in order to counteract their effects throughout the estimation
process; furthermore, such a formulation has revealed that any estimation of the strength of ambient
illumination always includes dark current, so that it must be estimated apart to get the real strength
of ambient illumination, if needed.

Finally, in essence, the methods of Zhang and Yang [309] and Bouganis and Brookes [19], for the
case of one directional light source, and no ambient illumination in the first work, are similar to the
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ones proposed in this chapter in the sense that their critical points correspond to the sphere points
whose isophote curve in the image has the least intensity over the sphere.

5.6 Experimental Results

A number of experiments have been performed in order to evaluate the robustness of the estimation
procedures described in this chapter and the accuracy of their results. The real images used in some
experiments were captured using a JAI CV-M70 progressive scan colour CCD camera with linear
response and 8 bits per colour channel and pixel, halogen illumination ranging from 400 W to 650 W
and a COMET Matrox frame grabber. According to the manufacturer specifications, the CCD of this
camera consists of 640× 480 effective square pixels 9.9 µm wide. On the other hand, the focal distance
of the camera is computed as the sum of the optics own focal distance, 16 mm, and the flange back
distance associated to the type of camera lens mount, 17.526 mm (C-mount); consequently, f = 33.526
mm [107, 275]. Those parameters have also been used to generate the synthetic images required by
some experiments.

As a general rule throughout this section, uncertainties δx̂ corresponding to estimates x̂ are calcu-
lated through standard formulas when x̂ comes from a regression analysis, while, for averaged values,
the Standard Deviation Of Mean, σx = σx√

N
, is used [272]. As it is well known for normally distributed

measurements and δx̂ calculated in this way, x̂ ± δx̂ provides a 68% confidence interval for x, while
x̂±2δx̂ corresponds to a 95% confidence interval, etc [151,272]. Besides, for further reference, the esti-
mation method assuming orthographic projection will be referred to as OPAM, Orthographic Projection
Assuming Method, while CPAM, Central Projection Assuming Method, will be used for the method
assuming central projection. On the other hand, TEAV and TECA will stand for Tilt Estimation by
AVeraging and Tilt Estimation by Centers Alignment, as they were introduced in section 5.1.

In all the experiments performed with real images, the calibration arrangement consisted in a sphere
made of white cork lying over a black background to avoid shadows (see figure 5.13(1st row,left)). The
surface of the sphere was painted using a matte white paint to avoid specularities and increase the
spatial uniformity of surface reflectance. Note, however, that, although the sphere has always been
required white, the fact that it is more or less white is not so important as whether its reflectance
is more or less constant throughout the visible spectrum. This is because, as pointed before, the F-
number is embedded into the estimations of Lc

aAc and Lc
dA

c, so that, for the same lighting conditions,
different estimations are obtained if the lens aperture is changed. Since the reflectance of the sphere ρb

affects both Lc
aAc and Lc

dA
c equally, as the F-number does, the actual value of ρb, if it is independent

of wavelength, acts as if the aperture was less than the one corresponding to the actual F-number of
the camera. Therefore, guaranteeing ρb = 1 is important only if the effect of the optics aperture is
going to be removed from the estimations.

5.6.1 Example of lighting parameters estimation

In this section, TEAV and TECA methods will be illustrated step by step for the general case of
central projection, using the calibration image shown in figure 5.13(1st row,right). Table 5.3 collects
some illustrative data about this particular experiment.

First, an initial guess about the location of the sphere projection contour is generated by separating
the sphere projection from the background using as threshold an intensity of 18 in all colour channels,
and fitting the resulting contour by an ellipse satisfying the properties enumerated in section 5.4. The
dashed line of figure 5.13(1st row,right) indicates the resultant ellipse. Next, the genetic optimization
strategy outlined in section 5.4 is executed for TEAV and TECA methods, using 20 ellipses per
generation and constraining them to be within two concentric circles whose radius are 2 image units
below and above the largest axis of the initial ellipse. Once 5 generations happen to introduce no
improvement, convergence is assumed to have been attained, which, in these particular cases, occurred
after 25 and 14 generations for, respectively, TEAV and TECA methods. The optimum ellipses found
are indicated as solid lines in figures 5.13(2nd row,a) and (3rd row,a). For those ellipses, the values
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Fig. 5.13. Example of estimation for CPAM: [1st row,left] calibration setup; [1st row,right] calibration image
with initial guess superimposed as a dashed line; [2nd row] TEAV method results; [3rd row] TECA method
results. In second and third rows, (a) calibration image with initial guess superimposed as a dashed line and
final ellipse superimposed as a solid line; (b) light source directions found; (c) straight line corresponding to
points (mb, Emb

[µDc ]) for the red channel.

estimated for x0

R , y0

R and z0

R are given in table 5.3. The values between parenthesis correspond to x0,
y0 and z0 after having measured 2R as 11.3 cm.

Table 5.3 also collects the initial and final fitting errors for every colour band, as well as the
corresponding linear correlation coefficients. On the one hand, the fitting error values given come from
scaling mb from the interval [0, 1] to the interval [0, 255], while Emb

[µDc ] values kept, from origin,
within [0, 255]. On the other hand, it can be clearly seen that the optimization improves significantly
the fitting of points (mb,Emb

[µDc ]) to the model. By way of illustration, the resultant sets of pairs
(mb,Emb

[µDc ]), for the red colour channel, are given in figures 5.13(2nd row,c), TEAV case, and (3rd
row,c), TECA case, together with the fitting line. As can be seen in these last plots, mb goes from 0.1
to 0.9, instead of covering the whole interval [0, 1]; it is also constrained to values for which the slant
of the surface normal cos−1 nz is above 95◦. On the one hand, mb ≥ 0.1 in order to diminish the effect
of the inaccuracies of the Lambertian model when angle θ is large, as suggested by Wolff et al. [295].
Besides, cos−1 nz > 95◦ reduces the influence of the real shape of the calibration sphere, which will
hardly be perfectly spherical. This influence is more harmful at the border of the projection, since can
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Table 5.3. Illustrative data for the lighting estimation example. In the table, α̂ stands for the vector of
estimates of Lc

aAc + EI [µdc]A
c and β̂ for the vector of estimates of Lc

dAc, c ∈ {R, G, B}, while δx is the
uncertainty associated to value x.

TEAV TECA

initial fitting errors (2.7991,3.5306,3.5446) (6.8137,8.1313,7.9425)

initial linear corr. coef. (0.9981,0.9969,0.9962) (0.9940,0.9931,0.9926)

# iterations 25 14

final fitting errors (0.6570,0.5376,0.5879) (1.3957,1.2446,1.3713)

final linear corr. coef. (0.9999,0.9999,0.9998) (0.9994,0.9995,0.9992)

x0
R

(x0) [cm] -0.05 (-0.29) -0.05 (-0.29)
y0
R

(y0) [cm] +0.25 (+1.43) +0.26 (+1.49)
z0
R

(z0) [cm] +30.28 (+171.08) +30.38 (+171.63)

ŝ (0.07,0.17,-0.98) (0.02,0.04,-1.00)

δŝ (0.00,0.00,0.00) (0.00,0.01,0.00)

α̂ (58.68,62.85,63.58) (56.25,58.73,57.98)

δα̂ (0.09,0.10,0.09) (0.22,0.16,0.12)

β̂ (169.52,160.72,143.33) (171.13,164.72,149.71)

δβ̂ (0.14,0.15,0.15) (0.29,0.20,0.16)

∣∣∣µD − (α̂ + m̂bβ̂)
∣∣∣ (3.59,4.74,5.33) (8.78,6.09,4.52)

max75%{
∣∣∣µD − (α̂ + m̂bβ̂)

∣∣∣} (4,6,7) (12,8,5)

give rise to the introduction of points of the black background in the analysis (i.e. Dc ≈ 0). On the
other hand, mb ≤ 0.9 keeps the estimations from being affected by clipping (i.e. when the dynamic
range of the camera is overflowed due to an excessive light level).

For the computation of the lighting direction, ∆ was set to 4 intensity levels, what gave rise to
finding the unit directions presented in figure 5.13(2nd row,b) and (3rd row,b). In both cases, TEAV
and TECA, the final estimation of s is obtained through clustering by means of the computation of
the MVE enclosing 75% of the tilt and slant values separately, TEAV, or just the slant values, TECA.
In this last case, the tilt of s was previously estimated from the alignment of ellipse centers.

Finally, lighting strengths were determined by fitting points (mb,Emb
[µDc ]) for all the colour chan-

nels, giving rise to the estimates given in table 5.3. As a final remark, notice the closeness of the
linear correlation coefficients to +1, which indicates a strong alignment of points (mb,Emb

[µDc ]) for
the different colour channels, which, on the other hand, can be visually checked for the red channel in
plots 5.13(2nd row,c) and (3rd row,c). That is to say, the results agree with the image formation model,
as they were supposed to be, which reinforces the validity of the estimation methods. Furthermore,
the intensity for pixels enclosed by the sphere projection were re-synthesized using the estimates of

αc = Lc
aAc + EI [µdc]A

c, βc = Lc
dA

c and mb, and difference
∣∣∣µDc − (α̂c + m̂bβ̂

c)
∣∣∣ was evaluated for all

those pixels. The result was that, for 75% of pixels, the difference was always below (4,6,7) for TEAV
and (12,8,5) for TECA, while the average difference was, for the whole sphere, (3.59,4.74,5.33) and
(8.78,6.09,4.52), respectively. To fully understand the meaning of these figures take into account that,
on the one hand, the real sphere is not geometrically perfect, but consists of small pits and bumps
all scattered across its surface, apart from other slight imperfections in its global shape. On the other
hand, the camera spatial noise effects could not be discounted from µDc when computing the difference
between actual and synthesized intensity.
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Table 5.4. Lighting parameters estimates using synthetic images generated under orthographic projection.
α̂R stands for the estimate of LR

a AR and β̂R for the estimate of LR
d AR. The angle between the true value of s

and the estimation ŝ is given between square brackets.

OPAM

s TEAV TECA

(+0.71,+0.00,-0.71) ŝ = (+0.71,+0.00,-0.71) [ 0.04◦] ŝ = (+0.71,+0.00,-0.71) [ 0.00◦]

α̂R = 20.26, β̂R = 234.71 α̂R = 20.38, β̂R = 234.59

(+0.50,+0.50,-0.71) ŝ = (+0.50,+0.50,-0.71) [ 0.07◦] ŝ = (+0.50,+0.50,-0.71) [ 0.04◦]

α̂R = 20.68, β̂R = 234.36 α̂R = 20.56, β̂R = 234.47

(+0.00,+0.71,-0.71) ŝ = (+0.00,+0.71,-0.71) [ 0.04◦] ŝ = (+0.00,+0.71,-0.71) [ 0.00◦]

α̂R = 20.26, β̂R = 234.71 α̂R = 20.38, β̂R = 234.59

(-0.50,+0.50,-0.71) ŝ = (-0.50,+0.50,-0.71) [ 0.07◦] ŝ = (-0.50,+0.50,-0.71) [ 0.04◦]

α̂R = 20.68, β̂R = 234.36 α̂R = 20.56, β̂R = 234.47

(-0.71,+0.00,-0.71) ŝ = (-0.71,+0.00,-0.71) [ 0.04◦] ŝ = (-0.71,+0.00,-0.71) [ 0.00◦]

α̂R = 20.26, β̂R = 234.71 α̂R = 20.38, β̂R = 234.59

(-0.50,-0.50,-0.71) ŝ = (-0.50,-0.50,-0.71) [ 0.07◦] ŝ = (-0.50,-0.50,-0.71) [ 0.04◦]

α̂R = 20.68, β̂R = 234.36 α̂R = 20.56, β̂R = 234.47

(-0.00,-0.71,-0.71) ŝ = (+0.00,-0.71,-0.71) [ 0.04◦] ŝ = (+0.00,-0.71,-0.71) [ 0.00◦]

α̂R = 20.26, β̂R = 234.71 α̂R = 20.38, β̂R = 234.59

(+0.50,-0.50,-0.71) ŝ = (+0.50,-0.50,-0.71) [ 0.07◦] ŝ = (+0.50,-0.50,-0.71) [ 0.04◦]

α̂R = 20.68, β̂R = 234.36 α̂R = 20.56, β̂R = 234.47

5.6.2 Orthographic projection versus perspective projection

This section compares estimations produced by OPAM and CPAM. At this point, it is important
to remember that OPAM does not need more than the sphere projection parameters, so that, under
the adequate conditions, can be easier to use than CPAM. To determine its scope of usage, several
experiments with synthetic images of a white sphere over black background were run and the resultant
estimations for both approaches are given in tables 5.4, 5.5, 5.6, 5.7 and 5.8. In all of them, the
estimation algorithms were provided with the exact projection parameters. Besides, noise was not
incorporated into the images, so that, in particular, EI [µdc] = 0 and, therefore, Lc

aAc could be directly
measured from points (mb,Emb

[µDc ]). Finally, Lc
aAc = 0.08 × 255 = 20.4 and Lc

dA
c = 0.92 × 255 =

234.6, for every colour channel c.
First of all, OPAM was faced with a set of images generated under orthographic projection where

the tilt of the lighting was varied from 0 to 360◦ in 45◦ steps. The results are given in table 5.4.
As can be seen, the estimations are correct in all cases leaving aside some inaccuracies due to the
digitalization of the intensity, together with the spatial discretization. Since the error associated to
the latter increases as the size of the projection of the sphere decreases, higher inaccuracies must be
expected on those cases.

Secondly, the same experiment as before, but with images generated under perspective projection,
was performed, setting R = 0.05 m, x0 = 0, y0 = 0 and z0 = 3 m, as indicated in section 5.3. Now,
results for both OPAM and CPAM are given in table 5.5. Those results clearly show that, under those
conditions, the inaccuracies in the lighting direction s estimated by OPAM are of the same order as the
inaccuracies of CPAM, and almost negligible. However, the estimates of Lc

aAc and Lc
dA

c start suffering
from the orthographic assumption in OPAM, with deviations from the true values of around 4 units in
each case. Despite those errors, the sets of points (mb,Emb

[µDc ]) were still aligned with mean fitting
errors around 0.1 and linear correlation coefficients of 0.999998, which suggests the idea that, under the
conditions stated above, OPAM generates points (mb,Emb

[µDc ]) still lying in a straight line, although
different to the correct one because of the error in the estimation of mb.

As a third experiment, z0 was varied from 1 to 8 meters in 1-meter steps, keeping the lighting
orientation constant at (0, 0,−1) and (x0, y0) = 0 in all eight cases. As it is shown in table 5.6, s is
again properly estimated and mostly unaffected by changes in z0, while the estimates of Lc

aAc and
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Table 5.5. Lighting parameters estimates using synthetic images generated under central projection, varying
the tilt of the illumination. α̂R stands for the estimate of LR

a AR and β̂R for the estimate of LR
d AR. The angle

between the true value of s and the estimation ŝ is given between square brackets.

OPAM

s TEAV TECA

(+0.71,+0.00,-0.71) ŝ = (+0.71,+0.00,-0.70) [ 0.32◦] ŝ = (+0.71,+0.00,-0.70) [ 0.31◦]

α̂R = 24.47, β̂R = 230.48 α̂R = 24.44, β̂R = 230.51

(+0.50,+0.50,-0.71) ŝ = (+0.50,+0.50,-0.70) [ 0.41◦] ŝ = (+0.50,+0.50,-0.70) [ 0.38◦]

α̂R = 24.76, β̂R = 230.26 α̂R = 24.65, β̂R = 230.38

(+0.00,+0.71,-0.71) ŝ = (+0.00,+0.71,-0.70) [ 0.32◦] ŝ = (+0.00,+0.71,-0.70) [ 0.31◦]

α̂R = 24.47, β̂R = 230.48 α̂R = 24.44, β̂R = 230.51

(-0.50,+0.50,-0.71) ŝ = (-0.50,+0.50,-0.70) [ 0.41◦] ŝ = (-0.50,+0.50,-0.70) [ 0.38◦]

α̂R = 24.76, β̂R = 230.26 α̂R = 24.65, β̂R = 230.38

(-0.71,+0.00,-0.71) ŝ = (-0.71,+0.00,-0.70) [ 0.32◦] ŝ = (-0.71,+0.00,-0.70) [ 0.31◦]

α̂R = 24.47, β̂R = 230.48 α̂R = 24.44, β̂R = 230.51

(-0.50,-0.50,-0.71) ŝ = (-0.50,-0.50,-0.70) [ 0.41◦] ŝ = (-0.50,-0.50,-0.70) [ 0.38◦]

α̂R = 24.76, β̂R = 230.26 α̂R = 24.65, β̂R = 230.38

(-0.00,-0.71,-0.71) ŝ = (+0.00,-0.71,-0.70) [ 0.32◦] ŝ = (+0.00,-0.71,-0.70) [ 0.31◦]

α̂R = 24.47, β̂R = 230.48 α̂R = 24.44, β̂R = 230.51

(+0.50,-0.50,-0.71) ŝ = (+0.50,-0.50,-0.70) [ 0.41◦] ŝ = (+0.50,-0.50,-0.70) [ 0.38◦]

α̂R = 24.76, β̂R = 230.26 α̂R = 24.65, β̂R = 230.38

CPAM

s TEAV TECA

(+0.71,+0.00,-0.71) ŝ = (+0.71,+0.00,-0.71) [ 0.00◦] ŝ = (+0.71,+0.00,-0.71) [ 0.03◦]

α̂R = 20.41, β̂R = 234.54 α̂R = 20.28, β̂R = 234.69

(+0.50,+0.50,-0.71) ŝ = (+0.50,+0.50,-0.71) [ 0.04◦] ŝ = (+0.50,+0.50,-0.71) [ 0.06◦]

α̂R = 20.25, β̂R = 234.73 α̂R = 20.18, β̂R = 234.80

(+0.00,+0.71,-0.71) ŝ = (+0.00,+0.71,-0.71) [ 0.00◦] ŝ = (+0.00,+0.71,-0.71) [ 0.03◦]

α̂R = 20.41, β̂R = 234.54 α̂R = 20.28, β̂R = 234.69

(-0.50,+0.50,-0.71) ŝ = (-0.50,+0.50,-0.71) [ 0.04◦] ŝ = (-0.50,+0.50,-0.71) [ 0.06◦]

α̂R = 20.25, β̂R = 234.73 α̂R = 20.18, β̂R = 234.80

(-0.71,+0.00,-0.71) ŝ = (-0.71,+0.00,-0.71) [ 0.00◦] ŝ = (-0.71,+0.00,-0.71) [ 0.03◦]

α̂R = 20.41, β̂R = 234.54 α̂R = 20.28, β̂R = 234.69

(-0.50,-0.50,-0.71) ŝ = (-0.50,-0.50,-0.71) [ 0.04◦] ŝ = (-0.50,-0.50,-0.71) [ 0.06◦]

α̂R = 20.25, β̂R = 234.73 α̂R = 20.18, β̂R = 234.80

(-0.00,-0.71,-0.71) ŝ = (+0.00,-0.71,-0.71) [ 0.00◦] ŝ = (+0.00,-0.71,-0.71) [ 0.03◦]

α̂R = 20.41, β̂R = 234.54 α̂R = 20.28, β̂R = 234.69

(+0.50,-0.50,-0.71) ŝ = (+0.50,-0.50,-0.71) [ 0.04◦] ŝ = (+0.50,-0.50,-0.71) [ 0.06◦]

α̂R = 20.25, β̂R = 234.73 α̂R = 20.18, β̂R = 234.80

Lc
dA

c improve as z0 increases for OPAM. As a final fact, the fitting error in all the cases studied lied
between 0.2 and 0.4 for OPAM, while the linear correlation coefficients were above 0.99995. Again this
reinforces the idea introduced in the last paragraph that points (mb,Emb

[µDc ]) still lie in a line in
OPAM, although it is not the correct one.

Finally, in the fourth experiment, the center of the sphere was moved off the optical axis, keeping
s = (1/2, 1/2, 1/

√
2) all the time. The center of the sphere was displaced along a circular path centered

at the optical axis, i.e. x2
0 + y2

0 = κ2, with z0 = 3 m. Tables 5.7 and 5.8 show the results obtained for,
respectively, κ = 0.01 m and κ = 0.15 m under those circumstances. From the two tables, it can be
noticed that the deviations in Lc

aAc and Lc
dA

c for OPAM seem to keep constant and similar to the ones
observed in experiment 3. The estimations of s, however, tend to get worse as κ is increased (observe
the angle between true and estimated s becomes 2-3◦ when κ = 0.15 m).
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Table 5.6. Lighting parameters estimates using synthetic images generated under central projection, varying
z0. α̂R stands for the estimate of LR

a AR and β̂R for the estimate of LR
d AR. The angle between the true value

of s and the estimation ŝ is given between square brackets.

OPAM

z0 [m] TEAV TECA

1 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (-0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 36.71, β̂R = 219.52 α̂R = 36.71, β̂R = 219.52

2 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 28.26, β̂R = 227.48 α̂R = 28.26, β̂R = 227.48

3 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,-0.00,-1.00) [ 0.00◦]

α̂R = 25.79, β̂R = 229.64 α̂R = 25.79, β̂R = 229.64

4 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 24.57, β̂R = 230.70 α̂R = 24.57, β̂R = 230.70

5 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 23.64, β̂R = 231.54 α̂R = 23.64, β̂R = 231.54

6 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 22.99, β̂R = 232.27 α̂R = 22.99, β̂R = 232.27

7 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 23.08, β̂R = 232.01 α̂R = 23.08, β̂R = 232.01

8 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 22.14, β̂R = 233.00 α̂R = 22.14, β̂R = 233.00

CPAM

z0 [m] TEAV TECA

1 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 20.40, β̂R = 234.61 α̂R = 20.40, β̂R = 234.61

2 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,-0.00,-1.00) [ 0.00◦]

α̂R = 20.43, β̂R = 234.53 α̂R = 20.43, β̂R = 234.53

3 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 20.44, β̂R = 234.57 α̂R = 20.44, β̂R = 234.57

4 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 20.34, β̂R = 234.69 α̂R = 20.34, β̂R = 234.69

5 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 20.40, β̂R = 234.64 α̂R = 20.40, β̂R = 234.64

6 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 20.07, β̂R = 234.98 α̂R = 20.07, β̂R = 234.98

7 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 20.32, β̂R = 234.61 α̂R = 20.32, β̂R = 234.61

8 ŝ = (+0.00,+0.00,-1.00) [ 0.00◦] ŝ = (+0.00,+0.00,-1.00) [ 0.00◦]

α̂R = 19.84, β̂R = 235.48 α̂R = 19.84, β̂R = 235.48

About the representativeness of the two values chosen for κ, notice that κ = 0.01 m corresponds
to a small displacement d = f × κ

z0
= 0.033526 × 0.01

3 = 1.12 × 10−4 m or, in image units, d =

1.12× 10−4/9.9× 10−6 = 11.29 pixels, using the size assumed for the cells, while a larger displacement
of d = 1.68e− 3 m or d = 169.32 pixels corresponds to κ = 0.15 m. In this last case, the images which
are synthesized cover an area of 470 × 470 pixels, so that slightly increasing κ from 0.15 would mean
the image would require a larger CCD than the one available from the camera used in the experiments
with real images.

Summing up, CPAM behaves correctly in all the cases analyzed here, while OPAM, in general, yields
more accurate estimations as z0 is increased and the center of the sphere lies closer to the optical axis,
as predicted in section 5.3. The inaccuracies in OPAM affect more to the estimation of Lc

aAc and
Lc

dA
c, although they tend to be quite constant, as if, while Lc

aAc and Lc
dA

c are not changed, points
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Table 5.7. Lighting parameters estimates using synthetic images generated under central projection, varying
x0 and y0 so that x2

0 + y2
0 = 0.012. α̂R stands for the estimate of LR

a AR and β̂R for the estimate of LR
d AR. The

angle between the true value of s and the estimation ŝ is given between square brackets.

OPAM

(x0, y0) [m] TEAV TECA

(0.010,0.000) ŝ = (+0.51,+0.50,-0.70) [ 0.54◦] ŝ = (+0.51,+0.50,-0.70) [ 0.56◦]

α̂R = 24.58, β̂R = 230.40 α̂R = 24.65, β̂R = 230.32

(0.007,0.007) ŝ = (+0.51,+0.51,-0.70) [ 0.58◦] ŝ = (+0.50,+0.50,-0.70) [ 0.54◦]

α̂R = 24.49, β̂R = 230.47 α̂R = 24.31, β̂R = 230.64

(0.000,0.010) ŝ = (+0.50,+0.51,-0.70) [ 0.54◦] ŝ = (+0.50,+0.51,-0.70) [ 0.56◦]

α̂R = 24.58, β̂R = 230.40 α̂R = 24.65, β̂R = 230.32

(-0.007,0.007) ŝ = (+0.50,+0.51,-0.70) [ 0.42◦] ŝ = (+0.50,+0.51,-0.70) [ 0.42◦]

α̂R = 24.53, β̂R = 230.48 α̂R = 24.51, β̂R = 230.48

(-0.010,0.000) ŝ = (+0.50,+0.50,-0.70) [ 0.29◦] ŝ = (+0.50,+0.50,-0.70) [ 0.29◦]

α̂R = 24.71, β̂R = 230.26 α̂R = 24.63, β̂R = 230.34

(-0.007,-0.007) ŝ = (+0.50,+0.50,-0.71) [ 0.08◦] ŝ = (+0.50,+0.50,-0.71) [ 0.06◦]

α̂R = 24.07, β̂R = 230.86 α̂R = 24.00, β̂R = 230.90

(-0.000,-0.010) ŝ = (+0.50,+0.50,-0.70) [ 0.29◦] ŝ = (+0.50,+0.50,-0.70) [ 0.29◦]

α̂R = 24.71, β̂R = 230.26 α̂R = 24.63, β̂R = 230.34

(0.007,-0.007) ŝ = (+0.51,+0.50,-0.70) [ 0.42◦] ŝ = (+0.51,+0.50,-0.70) [ 0.42◦]

α̂R = 24.53, β̂R = 230.48 α̂R = 24.51, β̂R = 230.48

CPAM

(x0, y0) [m] TEAV TECA

(0.010,0.000) ŝ = (+0.50,+0.50,-0.71) [ 0.04◦] ŝ = (+0.50,+0.50,-0.71) [ 0.04◦]

α̂R = 20.54, β̂R = 234.46 α̂R = 20.27, β̂R = 234.71

(0.007,0.007) ŝ = (+0.50,+0.50,-0.71) [ 0.07◦] ŝ = (+0.50,+0.50,-0.71) [ 0.12◦]

α̂R = 20.14, β̂R = 234.84 α̂R = 19.97, β̂R = 234.97

(0.000,0.010) ŝ = (+0.50,+0.50,-0.71) [ 0.04◦] ŝ = (+0.50,+0.50,-0.71) [ 0.04◦]

α̂R = 20.54, β̂R = 234.46 α̂R = 20.27, β̂R = 234.71

(-0.007,0.007) ŝ = (+0.50,+0.50,-0.71) [ 0.02◦] ŝ = (+0.50,+0.50,-0.71) [ 0.09◦]

α̂R = 20.29, β̂R = 234.72 α̂R = 20.06, β̂R = 234.91

(-0.010,0.000) ŝ = (+0.50,+0.50,-0.71) [ 0.02◦] ŝ = (+0.50,+0.50,-0.71) [ 0.01◦]

α̂R = 20.49, β̂R = 234.51 α̂R = 20.40, β̂R = 234.59

(-0.007,-0.007) ŝ = (+0.50,+0.50,-0.71) [ 0.09◦] ŝ = (+0.50,+0.50,-0.71) [ 0.11◦]

α̂R = 20.03, β̂R = 234.96 α̂R = 19.95, β̂R = 235.06

(-0.000,-0.010) ŝ = (+0.50,+0.50,-0.71) [ 0.02◦] ŝ = (+0.50,+0.50,-0.71) [ 0.01◦]

α̂R = 20.49, β̂R = 234.51 α̂R = 20.40, β̂R = 234.59

(0.007,-0.007) ŝ = (+0.50,+0.50,-0.71) [ 0.02◦] ŝ = (+0.50,+0.50,-0.71) [ 0.09◦]

α̂R = 20.29, β̂R = 234.72 α̂R = 20.06, β̂R = 234.91

(mb,Emb
[µDc ]) lied in a line different to the correct one but always the same. The fitting error increases

as the sphere moves off the optical axis. As for methods TEAV and TECA, results for synthetic images
do not show a higher supremacy of none of them over the other.

To finish, figure 5.14 summarizes the results presented throughout the section. In the graphs, the
length of every bar represents the maximum error attained during the experiment, while the average
value appears as another bar superimposed over the previous one.

5.6.3 Robustness measures

Four experiments to prove the robustness of the estimation procedures are presented in the following.
In the first experiment, the same calibration image served as input to CPAM and OPAM several times,
using each time a different starting contour, in order to determine the sensitivity of the estimation
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Table 5.8. Lighting parameters estimates using synthetic images generated under central projection, varying
x0 and y0 so that x2

0 + y2
0 = 0.152. α̂R stands for the estimate of LR

a AR and β̂R for the estimate of LR
d AR,

both for the red channel. The angle between the true value of s and the estimation ŝ is given between square
brackets.

OPAM

(x0, y0) [m] TEAV TECA

(0.150,0.000) ŝ = (+0.54,+0.50,-0.68) [ 2.75◦] ŝ = (+0.54,+0.50,-0.68) [ 2.80◦]

α̂R = 24.53, β̂R = 230.43 α̂R = 24.42, β̂R = 230.56

(0.106,0.106) ŝ = (+0.53,+0.53,-0.67) [ 3.23◦] ŝ = (+0.53,+0.53,-0.67) [ 3.23◦]

α̂R = 24.74, β̂R = 230.17 α̂R = 24.72, β̂R = 230.19

(0.000,0.150) ŝ = (+0.50,+0.54,-0.68) [ 2.75◦] ŝ = (+0.50,+0.54,-0.68) [ 2.80◦]

α̂R = 24.53, β̂R = 230.43 α̂R = 24.42, β̂R = 230.56

(-0.106,0.106) ŝ = (+0.48,+0.53,-0.70) [ 2.07◦] ŝ = (+0.48,+0.53,-0.70) [ 1.99◦]

α̂R = 24.71, β̂R = 230.29 α̂R = 24.68, β̂R = 230.34

(-0.150,0.000) ŝ = (+0.47,+0.50,-0.73) [ 2.30◦] ŝ = (+0.47,+0.50,-0.73) [ 2.24◦]

α̂R = 24.26, β̂R = 230.69 α̂R = 24.27, β̂R = 230.68

(-0.106,-0.106) ŝ = (+0.48,+0.48,-0.74) [ 2.52◦] ŝ = (+0.48,+0.48,-0.74) [ 2.54◦]

α̂R = 24.26, β̂R = 230.71 α̂R = 24.17, β̂R = 230.81

(-0.000,-0.150) ŝ = (+0.50,+0.47,-0.73) [ 2.30◦] ŝ = (+0.50,+0.47,-0.73) [ 2.24◦]

α̂R = 24.26, β̂R = 230.69 α̂R = 24.27, β̂R = 230.68

(0.106,-0.106) ŝ = (+0.53,+0.48,-0.70) [ 2.07◦] ŝ = (+0.53,+0.48,-0.70) [ 1.99◦]

α̂R = 24.71, β̂R = 230.29 α̂R = 24.68, β̂R = 230.34

CPAM

(x0, y0) [m] TEAV TECA

(0.150,0.000) ŝ = (+0.50,+0.50,-0.71) [ 0.10◦] ŝ = (+0.50,+0.50,-0.71) [ 0.10◦]

α̂R = 20.40, β̂R = 234.57 α̂R = 20.37, β̂R = 234.59

(0.106,0.106) ŝ = (+0.50,+0.50,-0.71) [ 0.05◦] ŝ = (+0.50,+0.50,-0.71) [ 0.04◦]

α̂R = 20.91, β̂R = 234.15 α̂R = 20.56, β̂R = 234.45

(0.000,0.150) ŝ = (+0.50,+0.50,-0.71) [ 0.10◦] ŝ = (+0.50,+0.50,-0.71) [ 0.10◦]

α̂R = 20.40, β̂R = 234.57 α̂R = 20.37, β̂R = 234.59

(-0.106,0.106) ŝ = (+0.50,+0.50,-0.71) [ 0.05◦] ŝ = (+0.50,+0.50,-0.71) [ 0.09◦]

α̂R = 20.57, β̂R = 234.45 α̂R = 20.42, β̂R = 234.59

(-0.150,0.000) ŝ = (+0.50,+0.50,-0.71) [ 0.06◦] ŝ = (+0.50,+0.50,-0.71) [ 0.08◦]

α̂R = 20.53, β̂R = 234.51 α̂R = 20.49, β̂R = 234.54

(-0.106,-0.106) ŝ = (+0.50,+0.50,-0.71) [ 0.03◦] ŝ = (+0.50,+0.50,-0.71) [ 0.00◦]

α̂R = 20.89, β̂R = 234.15 α̂R = 20.80, β̂R = 234.23

(-0.000,-0.150) ŝ = (+0.50,+0.50,-0.71) [ 0.06◦] ŝ = (+0.50,+0.50,-0.71) [ 0.08◦]

α̂R = 20.53, β̂R = 234.51 α̂R = 20.49, β̂R = 234.54

(0.106,-0.106) ŝ = (+0.50,+0.50,-0.71) [ 0.05◦] ŝ = (+0.50,+0.50,-0.71) [ 0.09◦]

α̂R = 20.57, β̂R = 234.45 α̂R = 20.42, β̂R = 234.59

methods against the initial circle/ellipse. The second experiment consisted in facing OPAM and CPAM
against synthetic images with varying levels of zero-mean Gaussian additive noise. In the third exper-
iment, a set of images taken under the same lighting direction but with different lens apertures, i.e.
the same s but different apparent values for La and Ld, were analyzed. Finally, the fourth experiment
consisted in changing s but keeping constant La and Ld. In all the experiments but the second one,
real images were used.

Sensitivity regarding the initial contour

In order to determine the sensitivity of the different estimation methods against the contour given
as input, the calibration image of figure 5.15(left) was processed up to four times using a different
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Fig. 5.14. Summary of results for orthographic versus perspective projection experiments: [top,left] angle
between true and estimated s; [bottom,left] difference between true and estimated αR; [bottom,right] difference
between true and estimated βR. (Average-value bars are shown superimposed over maximum-value bars.)

starting contour in each trial. Since the estimations are obtained through an evolutionary optimization
approach, justified by the complexity of the estimation task, the corresponding values must always
be expected sub-optimum solutions, and, hence, different values will likely result in each trial. Nev-
ertheless, the estimates produced by the algorithms are quite close to one another, as it is shown
in tables 5.15(right,a-d). Coherently with other experiments, the estimations of s tend to be more
concentrated than the estimates of the illumination strengths.

Robustness against Gaussian noise

To evaluate how robust the estimation methods were against noise, a set of noisy images, for which
La and Ld was kept constant but the light direction tilt varied in 45◦ steps, was considered. For every
level of noise, 5 images were generated and analyzed, and the mean estimate was kept. By way of
illustration, figure 5.16 shows the sort of degradation introduced by every level noise in one of the
synthetic images used in the experiment. It is important to notice that this experiment did not intend
to observe the behaviour of the estimated methods against images with a noise distribution derived
from the radiometric performance of the camera, what will be discussed in section 6.2.1. The purpose
was rather to put the estimation methods on increasingly more challenging situations.

Results for OPAM are given in figure 5.17, where: the uppermost row of plots shows the angle in
degrees between true and estimated s, true and estimated vectors La and true and estimated vectors
Ld; and the lowermost row corresponds to the absolute difference between the norms of the true and

the estimated lighting strengths: i.e.
∣∣∣
∥∥∥La

∥∥∥ −
∥∥∥L̂a

∥∥∥
∣∣∣ and

∣∣∣
∥∥∥Ld

∥∥∥ −
∥∥∥L̂d

∥∥∥
∣∣∣, respectively. Figure 5.18

shows the same type of results as before but regarding CPAM.
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(a)

trial ŝ α̂ β̂

1 (-0.18,0.55,-0.82) ( 41.63, 42.81, 42.43) (188.70,182.63,165.40)

2 (-0.18,0.55,-0.82) ( 42.70, 43.64, 43.28) (187.55,181.78,164.49)

3 (-0.18,0.55,-0.82) ( 45.16, 46.01, 45.52) (184.91,179.17,162.03)

4 (-0.18,0.55,-0.82) ( 42.92, 43.86, 43.46) (187.22,181.36,164.20)

(b)

trial ŝ α̂ β̂

1 (-0.16,0.54,-0.82) ( 41.86, 43.24, 42.92) (188.34,181.83,164.68)

2 (-0.17,0.55,-0.82) ( 44.14, 45.27, 44.81) (186.04,179.91,162.78)

3 (-0.16,0.55,-0.82) ( 42.02, 43.18, 42.88) (188.24,182.11,164.84)

4 (-0.17,0.55,-0.82) ( 42.59, 43.62, 43.30) (187.64,181.72,164.42)

(c)

trial ŝ α̂ β̂

1 (-0.18,0.55,-0.81) ( 37.78, 38.73, 38.70) (192.02,186.34,168.77)

2 (-0.18,0.55,-0.81) ( 37.74, 38.58, 38.62) (192.20,186.57,168.98)

3 (-0.18,0.55,-0.81) ( 36.53, 37.42, 37.44) (193.38,187.80,170.21)

4 (-0.18,0.55,-0.81) ( 36.60, 37.53, 37.54) (193.30,187.66,170.07)

(d)

trial ŝ α̂ β̂

1 (-0.17,0.55,-0.81) ( 38.68, 39.89, 39.84) (191.05,185.01,167.42)

2 (-0.17,0.55,-0.82) ( 34.63, 35.63, 35.74) (195.43,189.58,172.05)

3 (-0.17,0.55,-0.82) ( 35.01, 36.15, 36.24) (194.98,188.97,171.42)

4 (-0.17,0.55,-0.82) ( 35.88, 36.88, 36.93) (194.08,188.25,170.73)

Fig. 5.15. Results for robustness experiment 1: [left] calibration image used; [right] (a) OPAM-TEAV, (b)
OPAM-TECA, (c) CPAM-TEAV, (d) CPAM-TECA. In the tables, α̂ stands for the vector of estimates of

Lc
aAc + EI [µdc]A

c and β̂ for the vector of estimates of Lc
dAc, c ∈ {R, G, B}.

(a) (b) (c) (d)

Fig. 5.16. Examples of noisy images used in robustness experiment 2: (a) original image; (b) σ = 5; (c) σ = 10;
(d) σ = 15.

As can be seen, the estimates of s are quite accurate even for high levels of noise. The same applies
to the angle between true and estimated La and Ld, which means the colour of ambient and directional
illumination is accurately estimated even under noisy conditions. The magnitude of the illumination
strengths are, however, more affected by noise. Comparing OPAM and CPAM, it can be seen that both
present the same level of robustness, taking into account that OPAM tends to introduce an almost
constant error in the estimation of La and Ld, as shown in previous experiments. As for the behaviour
of TEAV and TECA, the plots clearly show that the former is, in general, more robust, although only
the deviations in the estimated illumination strengths are of importance in the latter.

Robustness of s estimations against changes in La and Ld

In this third experiment, 20 images were taken, varying the F-number of the camera from one image to
the next, but without altering the geometrical relationship between camera and calibration object, so
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Fig. 5.17. Results for robustness experiment 2 and OPAM: (a) TEAV, (b) TECA. (σ is the standard deviation,
in intensity levels, of the zero-mean Gaussian noise added to images.)

that s kept constant. Therefore, the application of the estimation methods to these 20 images should
yield very similar estimates for s in the different cases, although Lc

aAc + EI [µdc]A
c and Lc

dA
c would

vary accordingly. Figure 5.19 shows histograms of the difference angles between the estimations of s

for every possible pair of images of the set. The mean and maximum difference angles for the different
cases are given underneath every histogram. As can be appreciated, OPAM does not seem to be as
robust as CPAM in this case, although both provide a quite adequate performance. On the other
hand, TECA seems to be more robust than TEAV in both CPAM and OPAM, although for CPAM
the difference is more remarkable.

Robustness of La and Ld estimations against changes in s

Finally, in the fourth experiment, the lighting orientation was varied without modifying the amount of
light entering the camera to test the robustness of Lc

aAc + EI [µdc] and Lc
dA

c estimations. First, three
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Fig. 5.18. Results for robustness experiment 2 and CPAM: (a) TEAV, (b) TECA. (σ is the standard deviation,
in intensity levels, of the zero-mean Gaussian noise added to images.)

real calibration images were rotated four times 90 degrees, as well as the corresponding parameters of
the sphere elliptical contour in each case. Results appear in figures 5.20 and 5.21, showing there is no
appreciable difference in the estimates of Lc

aAc + EI [µdc] and Lc
dA

c.
In a second step of this experiment, the camera was rotated and moved eight times, without modi-

fying the position and strength of the light source. The corresponding estimates are given, respectively
for OPAM and CPAM, in tables 5.9 and 5.10. Besides, some statistics are provided at the bottom
in the same tables, where | · | is the vectors norm, avg{·} and σ· stand for, respectively, mean and
standard deviation, 255

√
3 is the maximum achievable norm of α and β, and v̂,w is the angle between

vectors v and w. As can be observed, the behaviour is quite similar in all four cases considered, with
almost the same statistical figures. As for the observed deviations in the estimates of s, α and β from
one configuration to the next, it must be taken into account that the rotation of the camera between
configurations implied recomputing the parameters of the contour fitting the projection of the sphere,
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Fig. 5.19. Results for robustness experiment 3: (a) OPAM, (b) CPAM.

so that the deviations also observed in robustness experiment 1 (see figure 5.15) must also be expected
here.

5.6.4 Comparison with other lighting direction estimation methods

This section compares OPAM and CPAM with two well-known methods often cited in the literature
about shape from shading: Lee and Rosenfeld’s (L&R) [141] and Zheng and Chellappa’s (Z&C) [311].
Both methods estimate the light source direction from the statistics of the image, assuming a certain
distribution for surface normals, as already explained in section 5.5, but without the need of estimating
shape information; in other words, both are stand-alone estimators. Besides, they share the common
assumption of locally spherical scene surfaces. In this sense, comparing them with OPAM and CPAM,
which also are stand-alone, makes sense.

The comparison is performed over two sets of noiseless synthetic images generated under different
slant and tilt angles of the light source: one set consists of images generated under orthographic
projection, while perspective projection is assumed in the other one; furthermore, in the second set, the
sphere is located slightly off the axis so that the sphere projection is not exactly a circle 5. Since neither
L&R or Z&C methods were designed on the basis of an image formation model including ambient
lighting, results are also provided discounting first the ambient reflection term corresponding to the
sphere. Furthermore, as for the L&R method, both the original formulation and the modified version
proposed by Zheng and Chellapa in [311] have been included in the comparison. The implementation
details are also according to [311]. OPAM and CPAM are given the exact projection parameters, while

5 The center of the sphere was shifted 0.025 × 0.033526
3

/9.9 × 10−6 ≈ 28 pixels from the center of the image
(see section 5.6.2 with regard to this calculation).
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ŝ (-0.18,0.55,-0.82) (-0.55,-0.18,-0.82) (0.18,-0.55,-0.82) (0.55,0.18,-0.82)
α̂ ( 43.22, 44.21, 43.81) ( 43.22, 44.21, 43.81) ( 43.22, 44.21, 43.81) ( 43.22, 44.21, 43.81)

β̂ (187.00,181.15,163.90) (187.00,181.15,163.90) (187.00,181.15,163.90) (187.00,181.15,163.90)

ŝ (-0.17,0.55,-0.82) (-0.55,-0.17,-0.82) (0.17,-0.55,-0.82) (0.55,0.17,-0.82)
α̂ ( 42.83, 43.84, 43.50) ( 42.83, 43.84, 43.50) ( 42.83, 43.84, 43.50) ( 42.83, 43.84, 43.50)

β̂ (187.40,181.52,164.22) (187.40,181.52,164.22) (187.40,181.52,164.22) (187.40,181.52,164.22)

ŝ (-0.15,0.28,-0.95) (-0.28,-0.15,-0.95) (0.15,-0.28,-0.95) (0.28,0.15,-0.95)
α̂ ( 75.97, 62.20, 60.69) ( 75.97, 62.20, 60.69) ( 75.97, 62.20, 60.69) ( 75.97, 62.20, 60.69)

β̂ (155.76,157.08,140.95) (155.76,157.08,140.95) (155.76,157.08,140.95) (155.76,157.08,140.95)

ŝ (-0.21,0.20,-0.96) (-0.20,-0.21,-0.96) (0.21,-0.20,-0.96) (0.20,0.21,-0.96)
α̂ ( 71.99, 56.98, 55.80) ( 71.99, 56.98, 55.80) ( 71.99, 56.98, 55.80) ( 71.99, 56.98, 55.80)

β̂ (160.27,163.63,147.25) (160.27,163.63,147.25) (160.27,163.63,147.25) (160.27,163.63,147.25)

ŝ (-0.05,0.49,-0.87) (-0.49,-0.05,-0.87) (0.05,-0.49,-0.87) (0.49,0.05,-0.87)
α̂ ( 50.52, 38.41, 35.70) ( 50.52, 38.41, 35.70) ( 50.52, 38.41, 35.70) ( 50.52, 38.41, 35.70)

β̂ (191.46,158.62,135.05) (191.46,158.62,135.05) (191.46,158.62,135.05) (191.46,158.62,135.05)

ŝ (-0.05,0.49,-0.87) (-0.49,-0.05,-0.87) (0.05,-0.49,-0.87) (0.49,0.05,-0.87)
α̂ ( 49.82, 38.19, 35.66) ( 49.82, 38.19, 35.66) ( 49.82, 38.19, 35.66) ( 49.82, 38.19, 35.66)

β̂ (192.34,158.85,135.08) (192.34,158.85,135.08) (192.34,158.85,135.08) (192.34,158.85,135.08)

Fig. 5.20. Results for robustness experiment 4-1 and OPAM. In the tables, α̂ stands for the vector of estimates
of Lc

aAc +EI [µdc]A
c and β̂ for the vector of estimates of Lc

dAc, c ∈ {R, G, B}. For every set of images, the first
table corresponds to TEAV, while the second one is for TECA.

L&R and Z&C methods are computed only over the pixels enclosed by the true sphere projection
contour. Finally, Lc

aAc = 0.08× 255 = 20.4 and Lc
dA

c = 0.92× 255 = 234.6, for every colour channel c.
To begin with, table 5.11 gives the results corresponding to spheres generated under orthographic

projection. OPAM results are thus collected. In the table, lighting directions are indicated through
the slant and tilt angles notation, instead of using vector notation, unlike other occasions. This is
to make easier the interpretation of results for the different slant and tilt angles examined. Besides,
columns labeled as ∆ correspond to the angle, in degrees, between the estimated and the true lighting
orientation. As can be observed, TEAV and TECA methods produce the best estimations. Both versions
of the L&R method behave quite correctly but only after having discounted the ambient reflection
term of the sphere; otherwise, the errors are quite important. As for the Z&C method, surprisingly, it
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ŝ (-0.18,0.56,-0.81) (-0.56,-0.18,-0.81) (0.18,-0.56,-0.81) (0.56,0.18,-0.81)
α̂ ( 37.07, 38.14, 38.49) ( 37.07, 38.14, 38.49) ( 37.07, 38.14, 38.49) ( 37.07, 38.14, 38.49)

β̂ (192.95,187.29,169.25) (192.95,187.29,169.25) (192.95,187.29,169.25) (192.95,187.29,169.25)

ŝ (-0.17,0.56,-0.81) (-0.56,-0.17,-0.81) (0.17,-0.56,-0.81) (0.56,0.17,-0.81)
α̂ ( 36.62, 37.71, 38.11) ( 36.62, 37.71, 38.11) ( 36.62, 37.71, 38.11) ( 36.62, 37.71, 38.11)

β̂ (193.25,187.62,169.57) (193.25,187.62,169.57) (193.25,187.62,169.57) (193.25,187.62,169.57)

ŝ (-0.13,0.29,-0.95) (-0.29,-0.13,-0.95) (0.13,-0.29,-0.95) (0.29,0.13,-0.95)
α̂ ( 81.25, 67.26, 67.21) ( 81.25, 67.26, 67.21) ( 81.25, 67.26, 67.21) ( 81.25, 67.26, 67.21)

β̂ (150.78,151.62,133.27) (150.78,151.62,133.27) (150.78,151.62,133.27) (150.78,151.62,133.27)

ŝ (-0.18,0.26,-0.95) (-0.26,-0.18,-0.95) (0.18,-0.26,-0.95) (0.26,0.18,-0.95)
α̂ ( 82.14, 66.61, 65.28) ( 82.14, 66.61, 65.28) ( 82.14, 66.61, 65.28) ( 82.14, 66.61, 65.28)

β̂ (148.32,152.30,135.85) (148.32,152.30,135.85) (148.32,152.30,135.85) (148.32,152.30,135.85)

ŝ (-0.04,0.51,-0.86) (-0.51,-0.04,-0.86) (0.04,-0.51,-0.86) (0.51,0.04,-0.86)
α̂ ( 46.07, 36.22, 35.02) ( 46.07, 36.22, 35.02) ( 46.07, 36.22, 35.02) ( 46.07, 36.22, 35.02)

β̂ (196.05,159.90,134.70) (196.05,159.90,134.70) (196.05,159.90,134.70) (196.05,159.90,134.70)

ŝ (-0.04,0.51,-0.86) (-0.51,-0.04,-0.86) (0.04,-0.51,-0.86) (0.51,0.04,-0.86)
α̂ ( 45.78, 35.98, 34.84) ( 45.78, 35.98, 34.84) ( 45.78, 35.98, 34.84) ( 45.78, 35.98, 34.84)

β̂ (196.29,160.12,134.84) (196.29,160.12,134.84) (196.29,160.12,134.84) (196.29,160.12,134.84)

Fig. 5.21. Results for robustness experiment 4-1 and CPAM. In the tables, α̂ stands for the vector of estimates
of Lc

aAc +EI [µdc]A
c and β̂ for the vector of estimates of Lc

dAc, c ∈ {R, G, B}. For every set of images, the first
table corresponds to TEAV, while the second one is for TECA.

behaves better when the ambient reflection term is not removed from the sphere projection, although,
in general, gives rise to higher errors than TEAV and TECA methods.

The results for images under perspective projection are given in table 5.12. As can be seen, L&R
and Z&C algorithms behave in the same way as for the set of orthographically-generated images, with
very small variations among the estimations for both set of images. Under CPAM in this case, TEAV
and TECA methods also produce estimations with inaccuracies below one tenth of degree, as before.
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(a)

# image ŝ α̂ β̂

1 (-0.73,-0.24,-0.64) (27.48,22.13,19.93) (184.97,181.74,172.97)
2 (-0.75,-0.12,-0.65) (28.33,23.39,21.41) (181.02,176.86,167.83)
3 (-0.75,0.01,-0.66) (30.57,25.84,23.75) (178.14,173.72,164.43)
4 (-0.75,0.10,-0.66) (30.98,26.68,24.91) (177.98,172.94,164.63)
5 (-0.72,0.22,-0.66) (33.03,28.70,27.00) (179.77,175.41,166.89)
6 (-0.73,-0.26,-0.62) (30.11,26.08,22.96) (170.63,165.35,158.23)
7 (-0.74,-0.29,-0.61) (34.98,30.65,27.27) (169.63,164.10,157.97)
8 (-0.73,-0.35,-0.58) (32.23,27.78,24.42) (176.45,171.04,164.95)

σ|α|

avg{|α|} × 100 = 9.31%
σ|α|

255
√

3
× 100 = 1.00% avg{α̂i, αj} = 1.33◦ max{α̂i, αj} = 2.88◦

σ|β|

avg{|β|} × 100 = 3.08%
σ|β|

255
√

3
× 100 = 2.07% avg{β̂i, βj} = 0.24◦ max{β̂i, βj} = 0.44◦

(b)

# image ŝ α̂ β̂

1 (-0.74,-0.20,-0.64) (26.93,21.79,19.79) (185.59,181.84,172.94)
2 (-0.75,-0.08,-0.65) (27.37,22.82,20.84) (181.77,176.93,168.03)
3 (-0.75,0.03,-0.66) (30.11,25.56,23.35) (178.48,173.75,164.67)
4 (-0.74,0.14,-0.66) (30.30,26.38,24.59) (178.61,172.91,164.74)
5 (-0.70,0.26,-0.66) (32.32,28.56,26.79) (180.36,174.80,166.56)
6 (-0.74,-0.23,-0.63) (29.30,25.30,22.33) (171.82,166.62,159.21)
7 (-0.75,-0.25,-0.62) (34.36,30.09,26.78) (170.53,164.93,158.65)
8 (-0.74,-0.32,-0.58) (32.09,27.67,24.22) (176.57,171.15,165.16)

σ|α|

avg{|α|} × 100 = 9.63%
σ|α|

255
√

3
× 100 = 1.01% avg{α̂i, αj} = 1.34◦ max{α̂i, αj} = 3.00◦

σ|β|

avg{|β|} × 100 = 2.90%
σ|β|

255
√

3
× 100 = 1.96% avg{β̂i, βj} = 0.22◦ max{β̂i, βj} = 0.43◦

Table 5.9. Results for robustness experiment 4-2 and OPAM: (a) TEAV, (b) TECA. In the tables, α̂ stands

for the vector of estimates of Lc
aAc + EI [µdc]A

c and β̂ for the vector of estimates of Lc
dAc, c ∈ {R, G, B}.

5.7 Conclusions

A total of four methods for estimating scene lighting parameters have been presented throughout this
chapter. Two of them assume orthographic projection (OPAM) while the other two assume perspective
projection (CPAM). Within every projection case, two algorithms for estimating the lighting orientation
have been discussed and compared, TEAV and TECA, which differ in the way how the tilt of the
illumination is determined.

The output of the estimators consists of the orientation of the illumination and the strengths of
ambient and directional lighting. The availability of colour calibration images also allows determining
the colour of both sources of light. As a limitation, the lighting strengths are estimated up to the factor
including the F-number (π/4)(d/f)2 and the exposure time T . If required, the particular value of the
F-number, determined by the particular lens aperture, should be discounted from the output given
by the algorithms. Accordingly, any change in the camera configuration would lead to the necessity
of repeating the estimation procedure, even if just the camera gain is modified. In this sense, Auto-
matic Gain Control (AGC) should be turned off if the lighting strengths are to be used. The lighting
orientation is, however, unaffected by such a change in the camera configuration.

Despite the limitations of the lighting estimation methods proposed in this chapter as for the
number of light sources, several advantages make them attractive in single-source cases against multi-
source methods: (1) in general, its complexity is lower than the multi-source methods; (2) a previous
geometric calibration of the camera is not required and the estimation of the surface normal vectors of
the calibration sphere is embedded within the method itself; (3) all the image pixels belonging to the
sphere projection are used in the estimation of the lighting parameters; (4) no threshold or parameter
needs to be set up.



116 Estimation of Lighting Parameters

(a)

# image ŝ α̂ β̂

1 (-0.75,-0.13,-0.65) (21.00,17.43,15.23) (175.15,169.27,161.33)
2 (-0.75,0.02,-0.67) (26.14,22.63,20.10) (172.89,166.79,158.60)
3 (-0.76,0.09,-0.64) (19.91,16.76,14.82) (173.46,167.49,160.47)
4 (-0.72,0.23,-0.65) (23.62,20.47,18.46) (173.54,168.07,161.12)
5 (-0.74,-0.26,-0.62) (26.03,22.22,19.40) (175.48,169.61,161.99)
6 (-0.74,-0.30,-0.60) (21.48,17.54,15.18) (182.54,176.74,169.12)
7 (-0.74,-0.35,-0.57) (24.22,19.93,17.11) (185.64,180.22,173.28)
8 (-0.75,0.35,-0.56) (21.26,18.07,15.83) (168.51,162.50,155.69)

σ|α|

avg{|α|} × 100 = 11.15%
σ|α|

255
√

3
× 100 = 0.87% avg{α̂i, αj} = 1.07◦ max{α̂i, αj} = 2.36◦

σ|β|

avg{|β|} × 100 = 3.32%
σ|β|

255
√

3
× 100 = 2.21% avg{β̂i, βj} = 0.16◦ max{β̂i, βj} = 0.41◦

(b)

# image ŝ α̂ β̂

1 (-0.74,-0.06,-0.67) (18.17,14.83,12.79) (177.61,171.45,163.29)
2 (-0.73,0.04,-0.68) (23.11,19.74,17.50) (175.75,169.50,160.70)
3 (-0.73,0.18,-0.66) (15.83,12.86,11.27) (177.06,170.87,163.16)
4 (-0.71,0.24,-0.66) (22.94,19.85,17.88) (173.93,168.36,161.37)
5 (-0.75,-0.19,-0.63) (23.05,19.34,16.77) (178.12,172.28,164.37)
6 (-0.74,-0.26,-0.61) (19.95,16.10,13.84) (183.17,177.30,169.58)
7 (-0.75,-0.31,-0.58) (22.19,18.07,15.33) (186.54,180.95,173.98)
8 (-0.72,0.40,-0.57) (19.83,16.61,14.41) (169.41,163.29,156.10)

σ|α|

avg{|α|} × 100 = 14.07%
σ|α|

255
√

3
× 100 = 0.98% avg{α̂i, αj} = 1.22◦ max{α̂i, αj} = 2.77◦

σ|β|

avg{|β|} × 100 = 3.14%
σ|β|

255
√

3
× 100 = 2.11% avg{β̂i, βj} = 0.18◦ max{β̂i, βj} = 0.47◦

Table 5.10. Results for robustness experiment 4-2 and CPAM: (a) TEAV, (b) TECA. In the tables, α̂ stands

for the vector of estimates of Lc
aAc + EI [µdc]A

c and β̂ for the vector of estimates of Lc
dAc, c ∈ {R, G, B}.

In all cases, the corresponding estimation method has been developed in connection with the camera
noise model presented in section 2.4.4, which has allowed identifying the noise sources corrupting digital
pixel values in order to counteract their effects throughout the estimation process; furthermore, such a
formulation has revealed that any estimation of the strength of ambient illumination always includes
dark current, so that it must be estimated apart to get the real strength of ambient illumination, if
needed.

An extensive battery of tests has been carried out in order to characterize as accurately as possi-
ble the scope of application of the lighting parameters estimation methods presented. The following
conclusions can be drawn from the corresponding results:

• The different tests performed with synthetic images have shown OPAM and CPAM quite accu-
rate when processing images generated under the corresponding projection. This accuracy has
maintained at the same level whatever the tilt and slant of directional lighting has been.

• OPAM has resulted to be quite useful for estimating the lighting orientation even under perspective
projection, as long as the sphere center is not too separated from the optical axis. Regarding the
estimation of the lighting strengths, OPAM estimations tended to be biased when processing images
generated under perspective projection. The bias seemed to be constant across lighting orientations
and changes in the XY position of the sphere center, while the bias tended to decrease as the sphere
was moved farther from the camera. CPAM produced errors below one tenth of degree in all cases.

• The initial contour of the projection sphere has not resulted determinant in the measurement of
the lighting orientation when analyzing real calibration images. As for the lighting strengths, some
oscillations less than 4 intensity levels in amplitude have been detected.
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Table 5.11. Comparison results for synthetic spheres under orthographic projection. True and estimated
lighting directions are given through the tilt τ and slant σ angles. L&R1: Original L&R method without
ambient reflection term; L&R2: Original L&R method with ambient reflection term; L&R3: Modified L&R
method without ambient reflection term; L&R4: Modified L&R method with ambient reflection term; Z&C1:
Z&C method without ambient reflection term; Z&C2: Z&C method with ambient reflection term. ∆ means the
angle between true and estimated illumination directions. TEAV and TECA methods are used within OPAM.
All the angles are given in degrees.

true L&R1 L&R2 L&R3 L&R4

τ σ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆

0.00 112.50 0.00 113.50 1.00 0.00 135.50 23.00 0.00 112.50 0.00 0.00 126.50 14.00

30.00 112.50 30.23 113.50 1.02 30.23 135.50 23.00 30.23 112.50 0.21 30.23 126.50 14.00

60.00 112.50 59.77 113.50 1.02 59.77 135.50 23.00 59.77 112.50 0.21 59.77 126.50 14.00

90.00 112.50 90.00 113.50 1.00 90.00 135.50 23.00 90.00 112.50 0.00 90.00 126.50 14.00

0.00 135.00 0.00 135.50 0.50 0.00 152.50 17.50 0.00 135.50 0.50 0.00 144.50 9.50

30.00 135.00 30.38 135.50 0.57 30.38 152.50 17.50 30.38 135.50 0.57 30.38 144.50 9.50

60.00 135.00 59.62 135.50 0.57 59.62 152.50 17.50 59.62 135.50 0.57 59.62 144.50 9.50

90.00 135.00 90.00 135.50 0.50 90.00 152.50 17.50 90.00 135.50 0.50 90.00 144.50 9.50

0.00 157.50 0.00 158.50 1.00 0.00 180.00 22.50 0.00 157.50 0.00 0.00 166.50 9.00

30.00 157.50 29.87 158.50 1.00 0.00 180.00 22.50 29.87 157.50 0.05 29.87 166.50 9.00

60.00 157.50 60.13 158.50 1.00 0.00 180.00 22.50 60.13 157.50 0.05 60.13 166.50 9.00

90.00 157.50 90.00 158.50 1.00 0.00 180.00 22.50 90.00 157.50 0.00 90.00 166.50 9.00

true Z&C1 Z&C2 TEAV TECA

τ σ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆

0.00 112.50 0.00 105.50 7.00 0.00 114.50 2.00 0.00 112.47 0.03 0.00 112.58 0.08

30.00 112.50 30.11 105.50 7.00 30.11 114.50 2.00 30.00 112.43 0.07 30.01 112.47 0.03

60.00 112.50 59.89 105.50 7.00 59.89 114.50 2.00 60.00 112.43 0.07 59.99 112.47 0.03

90.00 112.50 90.00 105.50 7.00 90.00 114.50 2.00 90.00 112.47 0.03 90.00 112.58 0.08

0.00 135.00 0.00 120.50 14.50 0.00 128.50 6.50 0.00 135.04 0.04 0.00 135.00 0.00

30.00 135.00 30.00 120.50 14.50 30.00 128.50 6.50 30.02 134.98 0.02 30.02 135.07 0.07

60.00 135.00 60.00 120.50 14.50 60.00 128.50 6.50 59.98 134.98 0.02 59.98 135.07 0.07

90.00 135.00 90.00 120.50 14.50 90.00 128.50 6.50 90.00 135.04 0.04 90.00 135.00 0.00

0.00 157.50 0.00 142.50 15.00 0.00 149.50 8.00 0.00 157.49 0.01 0.00 157.49 0.01

30.00 157.50 30.15 142.50 15.00 30.15 149.50 8.00 30.05 157.60 0.10 30.00 157.57 0.07

60.00 157.50 59.85 142.50 15.00 59.85 149.50 8.00 59.95 157.60 0.10 60.00 157.57 0.07

90.00 157.50 90.00 142.50 15.00 90.00 149.50 8.00 90.00 157.49 0.01 90.00 157.49 0.01

• Both OPAM and CPAM have shown a significant robustness against zero-mean Gaussian noise of
up to 15 intensity levels of standard deviation. Clearly TEAV has proved to be more robust than
TECA for both OPAM and CPAM, specially as for the estimation of lighting strengths.

• Among all the variants, CPAM-TECA has exhibited the greatest constancy as for the determination
of the lighting orientation against changes in the illumination strengths, with a difference of less
than half a degree on average among estimations. In the remaining cases, the average difference
did not exceed 1.5 degrees.

• The robustness in the estimation of illumination strengths against changes in the lighting direction
has been determined to be high: on the one hand, no changes were appreciated over three real images
rotated four times 90 degrees, either for OPAM and for CPAM; on the other hand, rotations and
displacements of the camera led to deviations below 3 degrees among the estimates of the colour
of the ambient illumination, and below half a degree for the directional illumination, while the
variations in the norms of the strengths were about 1-2 % with regard to the largest possible norm.

• Although there are simpler methods suitable for the estimation of the lighting orientation from
a calibration sphere (L&R [141] and Z&C [311]), the methods presented here clearly outperform
them, producing errors around a tenth of degree in synthetic images, while the others yield impor-
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Table 5.12. Comparison results for synthetic spheres under perspective projection. True and estimated lighting
directions are given through the tilt τ and slant σ angles. L&R1: Original L&R method without ambient
reflection term; L&R2: Original L&R method with ambient reflection term; L&R3: Modified L&R method
without ambient reflection term; L&R4: Modified L&R method with ambient reflection term; Z&C1: Z&C
method without ambient reflection term; Z&C2: Z&C method with ambient reflection term. ∆ means the
angle between true and estimated illumination directions. TEAV and TECA methods are used within CPAM.
All the angles are given in degrees.

true L&R1 L&R2 L&R3 L&R4

τ σ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆

0.00 112.50 0.00 112.50 0.00 0.00 134.50 22.00 0.00 112.50 0.00 0.00 126.50 14.00

30.00 112.50 29.43 112.50 0.52 29.43 134.50 22.00 30.23 112.50 0.21 30.23 126.50 14.00

60.00 112.50 60.57 112.50 0.52 60.57 134.50 22.00 59.77 112.50 0.21 59.77 126.50 14.00

90.00 112.50 90.00 112.50 0.00 90.00 134.50 22.00 90.00 112.50 0.00 90.00 126.50 14.00

0.00 135.00 0.00 135.50 0.50 0.00 152.50 17.50 0.00 135.50 0.50 0.00 144.50 9.50

30.00 135.00 29.30 135.50 0.70 29.30 152.50 17.50 30.38 135.50 0.57 30.38 144.50 9.50

60.00 135.00 60.70 135.50 0.70 60.70 152.50 17.50 59.62 135.50 0.57 59.62 144.50 9.50

90.00 135.00 90.00 135.50 0.50 90.00 152.50 17.50 90.00 135.50 0.50 90.00 144.50 9.50

0.00 157.50 0.00 159.50 2.00 0.00 180.00 22.50 0.00 157.50 0.00 0.00 166.50 9.00

30.00 157.50 30.32 159.50 2.00 0.00 180.00 22.50 29.87 157.50 0.05 29.87 166.50 9.00

60.00 157.50 59.68 159.50 2.00 0.00 180.00 22.50 60.13 157.50 0.05 60.13 166.50 9.00

90.00 157.50 90.00 159.50 2.00 0.00 180.00 22.50 90.00 157.50 0.00 90.00 166.50 9.00

true Z&C1 Z&C2 TEAV TECA

τ σ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆ τ̂ σ̂ ∆

0.00 112.50 0.00 105.50 7.00 0.00 114.50 2.00 0.00 112.35 0.15 0.00 112.55 0.05

30.00 112.50 30.08 105.50 7.00 30.08 114.50 2.00 30.00 112.39 0.11 29.99 112.44 0.06

60.00 112.50 59.92 105.50 7.00 59.92 114.50 2.00 60.00 112.39 0.11 60.01 112.44 0.06

90.00 112.50 90.00 105.50 7.00 90.00 114.50 2.00 90.00 112.35 0.15 90.00 112.55 0.05

0.00 135.00 0.00 120.50 14.50 0.00 128.50 6.50 0.00 135.01 0.01 0.00 135.04 0.04

30.00 135.00 29.97 120.50 14.50 29.97 128.50 6.50 30.04 135.05 0.06 29.96 135.06 0.06

60.00 135.00 60.03 120.50 14.50 60.03 128.50 6.50 59.96 135.05 0.06 60.04 135.06 0.06

90.00 135.00 90.00 120.50 14.50 90.00 128.50 6.50 90.00 135.01 0.01 90.00 135.04 0.04

0.00 157.50 0.00 142.50 15.00 0.00 149.50 8.00 0.00 157.43 0.07 0.00 157.45 0.05

30.00 157.50 30.22 142.50 15.00 30.22 149.50 8.00 30.17 157.40 0.12 29.98 157.41 0.09

60.00 157.50 59.78 142.50 15.00 59.78 149.50 8.00 59.83 157.40 0.12 60.02 157.41 0.09

90.00 157.50 90.00 142.50 15.00 90.00 149.50 8.00 90.00 157.43 0.07 90.00 157.45 0.05

tant errors, between 2 and 20 degrees in the different cases tested, mostly because of the presence of
ambient lighting. The perspective projection has not led to important variations in the estimations
of those alternative methods, however.
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Radiometric Calibration of CCD Cameras

This chapter proposes an algorithm called R2CIU (Robust Radiometric Calibration and Intensity Un-
certainty estimation) for characterizing the noise sources affecting CCD performance. In other words,
the purpose is to calibrate CCD cameras at the radiometric level. As will be seen, those techniques are
intended to determine the distribution parameters of the noise sources discussed in section 2.4.4 and
summarized in equation 2.44, namely the photo-response non-uniformity (PRNU), the dark current
non-uniformity (DCNU) and the noise independent of the charge stored at collection sites.

The radiometric calibration of CCD sensors derive in two important benefits: on the one hand,
it allows accounting for the corresponding noise within image processing algorithms by means of
uncertainties associated to every digital intensity level; on the other hand, synthetic images can be
generated according to the estimated noise model parameters, being the main interest of these images
that they allow testing machine vision algorithms under more realistic noisy conditions, rather than just
using standard models —Gaussian, salt and pepper, etc.— not taking into account the performance
of the sensor producing the irradiance measurement. Besides, the determination of the distribution
parameters of the DCNU will allow removing the term EI [µdc]A

c from αc when estimating the lighting
strengths after fitting points (mb,Emb

[µDc ]) by a straight line, as explained in section 5.1.
The rest of the chapter is organized as follows: section 6.1 presents a set of techniques for estimating

the distribution parameters of the noise sources affecting CCD performance; section 6.2 discusses the
two above-mentioned applications of the radiometric calibration of vision cameras; previous work is
reviewed in section 6.3, while experimental results are provided in section 6.4; finally, conclusions
appear in section 6.5.

6.1 Estimation of the Camera Noise Model Parameters

This section will present a set of techniques for estimating the parameters of the camera noise model
expressed in equation 2.44. All of them are based on the use of constant reflectance matte calibration
cards uniformly illuminated and covering the whole field of view of the camera.

Under those circumstances, equation 5.1 results again, which is reproduced next for convenience
after a slight reordering of terms and the expansion of the noise term N c:

Dc(i, j) = K(i, j) [(Laρb)
c + mb(i, j)(Ldρb)

c]Ac + µdc(i, j)A
c

+

Nc(i,j)︷ ︸︸ ︷
(N c

S(i, j) + Ndc(i, j)) Ac

︸ ︷︷ ︸
Nc

e (i,j)

+NRAc + NQ︸ ︷︷ ︸
Nc

f

. (6.1)

In this last equation, if the the card is not bent anyway, mb(i, j) does not change across the image.
Moreover, the light source uniformity assumption makes the whole expression (Laρb)

c + mb(Ldρb)
c be

constant.
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Fig. 6.1. Geometric relationships among camera noise model parameters: (a) equations 6.5 and (b) equa-
tion 6.8.

6.1.1 Estimation of the PRNU and DCNU distribution parameters

Let us assume that several images of the calibration card with the same camera and lighting parameters
are taken and averaged pixel by pixel to produce image µDc . As discussed in section 4.4.1, the non-
spatial noise N c tends to vanish in the average pixel values µDc(i, j). If, in turn, the average across
the whole image of the µDc(i, j) values is taken, then equation 6.2 results:

EI [µDc ] = EI [K] [(Laρb)
c + mb(Ldρb)

c]Ac + EI [µdc]A
c , (6.2)

which, from the fact that EI [K] is typically 1, simplifies to equation 6.3:

EI [µDc ] = [(Laρb)
c + mb(Ldρb)

c]Ac + EI [µdc]A
c . (6.3)

Next, given the independence between the PRNU and the DCNU and after the averaging of the Dc(i, j)
values, which reduces the influence of non-spatial noise in image pixels, the (spatial) variance of the
µDc(i, j) values is given by equation 6.4:

VarI [µDc ] = VarI [K] [(Laρb)
c + mb(Ldρb)

c]
2
(Ac)

2
+ VarI [µdc] (A

c)
2

, (6.4)

which, using equation 6.3, transforms into equation 6.5a:

VarI [µDc ] = VarI [K] (EI [µDc ] − EI [µdc]A
c)

2
+ VarI [µdc] (A

c)
2

, (6.5a)

or, expanded:

VarI [µDc ] = VarI [K] (EI [µDc ])
2 − 2VarI [K] (EI [µdc]A

c) EI [µDc ]

+VarI [K] (EI [µdc]A
c)

2
+ VarI [µdc] (A

c)
2

.
(6.5b)

According to equations 6.5, points (EI [µDc ],VarI [µDc ]) lie in a parabola like the one shown in
figure 6.1(a), from whose parameters the (spatial) variance of K and µdc, together with EI [µdc], can
be estimated. Such points can be obtained from several sets of images of the calibration card taken
at different values of Ic = (Laρb)

c + mb(Ldρb)
c. These images can be easily generated changing, from

set to set, either (Laρb)
c, mb, or (Ldρb)

c, alone or in combination with one another. The mb term can
be altered just tilting the plane card in front of the camera, while the lighting-related terms change if
neutral-density (ND) filters are placed in front of the camera or its optics aperture (i.e. the F-number)
is varied, or, finally, if the reflectance of the card is varied uniformly. Both ND filters and modifications
of the iris give rise to changes in the irradiance incident at all the CCD cells for all wavelengths, in a
more uniform way in a spatial sense when ND filters are used. This affects the net values of the (Laρb)

c

and (Ldρb)
c terms equally. Changing the shutter speed (i.e. the integration time T of equation 2.40)
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Pseudocode 6.1 Determination of the PRNU and DCNU distribution parameters.

(1) Take a number of sets of images of the calibration card so that, from set to set, (Laρb)
c +mb(Ldρb)

c

changes
(2) Compute the average image µDc for every set
(3) Calculate EI [µDc ] and VarI [µDc ] for every set of images
(4) Fit the different pairs (x, y) = (EI [µDc ], VarI [µDc ]) by a parabola y = ax2 − 2bx + c
(5) Estimate VarI [K], EI [µdc]A

c and VarI [µdc](A
c)2 as follows:

VarI [K] = a, EI [µdc]A
c = b

a
and VarI [µdc](A

c)2 = c − b2

a

or the camera gain also gives rise to different pairs (VarI [µDc ] ,EI [µDc ]), although at the expense of
modifying the behaviour of dark current, and, consequently, the values of EI [µdc]A

c and VarI [µdc](A
c)2.

The resulting pairs would not necessarily satisfy, thus, the aforementioned parabolic relationship.
Pseudocode 6.1 summarizes the whole estimation procedure.

6.1.2 Estimation of camera gain and charge-independent non-spatial noise

Further manipulation of equation 6.1 allows estimating the camera gain Ac and the variance of the
noise independent of the number of electrons stored at collection sites N c

f . To perform this calculation,

the (temporal) variance of the intensity level in a certain image cell between exposures, σ2
Dc(i, j), will

be determined (i.e. several images of the calibration card under exactly the same imaging conditions
are taken and the variance image σ2

Dc is considered). In such a case, the variation comes from the shot
noises N c

S and Ndc, and from N c
f . On the basis of the independence between the different noise sources,

σ2
Dc(i, j) is given by:

σ2
Dc(i, j) = [K(i, j) ((Laρb)

c + mb(i, j)(Ldρb)
c) + µdc(i, j)] (A

c)2 +
(
σc

f

)2
, (6.6)

where (σc
f )2 is the variance of N c

f . Now, given that mb(i, j) is constant throughout the image, the

following equation results taking the (spatial) mean of the σ2
Dc(i, j) values:

EI [σ
2
Dc ] = ((Laρb)

c + mb(Ldρb)
c + EI [µdc]) (Ac)2 +

(
σc

f

)2
, (6.7)

which, using equation 6.3, becomes:

EI [σ
2
Dc ] = AcEI [µDc ] +

(
σc

f

)2
. (6.8)

Therefore, according to equation 6.8, pairs (EI [µDc ],EI [σ
2
Dc ]) lie in a straight line whose slope and

intercept with the EI [σ
2
Dc ] axis coincide with, respectively, Ac and (σc

f )2 (see figure 6.1(b)). These
pairs can be obtained taking several sets of images so that Ic = (Laρb)

c + mb(Ldρb)
c changes from set

to set, as previously discussed, and taking the (spatial) average of the pixel-by-pixel (temporal) mean
and variance of the images within every set. Pseudocode 6.2 summarizes the estimation procedure.

Pseudocode 6.2 Determination of camera gain and non-spatial noise.

(1) Take a number of sets of images of the calibration card so that, from set to set, (Laρb)
c +mb(Ldρb)

c

changes
(2) Compute the average µDc and variance σ2

Dc images for every set
(3) Calculate EI [µDc ] and EI [σ

2
Dc ] for every set of images

(4) Fit the different pairs (x, y) = (EI [µDc ], EI [σ
2
Dc ]) by a straight line y = ax + b

(5) Estimate Ac and (σc
f )2 from, respectively, a and b
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Pseudocode 6.3 Procedure for generating synthetic images with realistic noise. (N (x, y) represents
a random number taken from a normal population of mean x and standard deviation y, while P(x)
corresponds to a random number taken from a Poisson distribution of parameter x.)

for every image cell (i, j)

(1) K(i, j) := N (1,
√

VarI [K])

(2) µdc(i, j) := N (EI [µdc],
√

VarI [µdc])
(3) for every colour channel c

(3.1) [Ic(i, j)Ac] := [(Laρb(i, j))
cAc] + mb(i, j) [(Ldρb(i, j))

cAc] + mi(i, j) [(Ldρi(i, j))
cAc]

(3.2) Nc
f := N (0, σc

f )

(3.3) Dc(i, j) := P
(
K(i, j) [Ic(i,j)Ac]

Ac

)
Ac + P (µdc(i, j)) Ac + Nc

f

endfor
endfor

6.2 Applications of Radiometric Camera Calibration

The benefit of a camera model such as the one of section 2.4.4, together with the values of the
corresponding parameters, estimated by means of the procedures proposed in section 6.1, is twofold:

• On the one hand, noise founded on the particular characteristics of the imaging sensor can be
incorporated to synthetic images in order to test the robustness of computer vision algorithms,
instead of adding random noise without any knowledge of its representativeness with regard to the
real imaging conditions imposed by the sensor itself.

• On the other hand, the uncertainties in the measurements of image irradiance can be determined
and therefore their knowledge introduced into a computer vision algorithm, for instance, to compute
adaptive thresholds. Stokman suggested this idea in [262], although his camera noise model did not
include PRNU nor charge-independent noises, nor distinguished between DCNU and dark current
shot noise; moreover, although his method is based on the propagation of uncertainties along colour
space transformations, the computation of the uncertainties is based on the unknown original
irradiance value, not on the final digital value returned by the camera. The method presented in
this section yields a table relating irradiance measurements directly with their uncertainty.

Both issues are developed in the following sections.

6.2.1 Incorporation of realistic noise into synthetic images

Pseudocode 6.3 proposes a method to obtain noisy images on the basis of the camera model introduced
in section 2.4.4. To this end, this procedure makes use of estimates of VarI [K], EI [µdc], VarI [µdc], Ac

and σc
f and approximates the distributions of the PRNU, the DCNU and the charge-independent noise

by Gaussian distributions.
Referring to pseudocode 6.3, steps (1) and (2) determine the behaviour of current cell (i, j) as

for photo-response and dark current average. The next step, (3), computes the remaining terms, de-
pendent on the colour channel considered. In this way, step (3.1) calculates the ideal intensity value
corresponding to colour channel c and image cell (i, j) in the synthetic scene, Ic(i, j)Ac, on the basis
of the reflectance and illumination values for cell (i, j) (observe this is a simplification of equation 4.1).
Notice that the ambient, body and interface composite reflectances are assumed to include the cor-
responding camera gain, so that they are already values between 0 and 255; therefore, their sum,
weighted by the geometrical terms mb and mi, directly gives rise to Ic(i, j)Ac. Next, step (3.2) gives
value to N c

f , the noise independent of the number of electrons stored in the collection site, by means of
a zero-mean normal distribution with standard deviation σc

f . At last, in step (3.3), the final intensity
value is generated through the sum of the non-charge-dependent noise N c

f and two Poisson-distributed
random values parameterized by the corresponding expected number of electrons at the collection
site, K(i, j)Ic(i, j) and µdc(i, j), to incorporate the uncertainty in the number of collected electrons.
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Table 6.1. Contribution of the different noise sources to the uncertainty in digital intensity levels.

noise source associated variance

PRNU VarI [K] (IcAc)2

DCNU VarI [µdc](A
c)2

shot noise at image cell (i, j) K(i, j)Ic(Ac)2

dark current shot noise at image cell (i, j) µdc(i, j)(A
c)2

readout and quantization noises
(
σc

f

)2

Therefore, according to equation 2.44, the sum of the shot noise and dark current shot noise would
correspond to:

N c
e (i, j) = P

(
K(i, j)

[Ic(i, j)Ac]

Ac

)
Ac + P (µdc(i, j)) Ac − (K(i, j)[Ic(i, j)Ac] + µdc(i, j)A

c) . (6.9)

Taking into account that a Poisson distribution P(µ) can be well approximated by a normal distribu-
tion N (µ,

√
µ) when µ is large [272] and that the expected number of collected electrons µ will seldom be

low, step (4) of pseudocode 6.3 can be substituted by Dc(i, j) := N
(
µ1,

√
µ1

)
Ac+N

(
µ2,

√
µ2

)
Ac+N c

f ,

with µ1 = K(i, j) [Ic(i,j)Ac]
Ac and µ2 = µdc(i, j) in order to ease the generation of the synthetic image.

For instance, if K(i, j) = 1, Ac = 0.01 and Ic(i, j)Ac = 1 (i.e. very low intensity), µ1 results to be 100,
value for which the approximation is quite accurate.

6.2.2 Determination of uncertainties in the measurement of image irradiance

Generalizing equation 6.6, equation 6.10 expresses the uncertainty in the irradiance measurement for
image cell (i, j):

σ2
Dc(i, j) = [K(i, j)Ic(i, j) + µdc(i, j)] (A

c)2 +
(
σc

f

)2
. (6.10)

That is to say, given the precise value of K and µdc for cell (i, j), it is possible to determine how
uncertain is Dc for a certain value Ic(i, j) = (Laρa)c + mb(i, j)(Ldρb)

c + mi(i, j)(Ldρi)
c.

In case it is planned to use this information in computer vision algorithms, for a, let us say,
typical 640 × 480 RGB camera providing 8-bit digital intensity levels, a data structure consisting of
640×480×256×3 uncertainty values would result. In case every uncertainty is represented as a 4-byte
floating point value, the whole structure requires a total of 943,718.400 bytes, or 900 Mbytes, to be
stored. Certainly, it is a huge data structure, probably overdetailed for most vision applications. Instead,
in this section, it is proposed to determine the uncertainty corresponding to every digital intensity level
IcAc irrespectively of the particular image cell (i, j) to which the irradiance measurement is related
to. This strategy implies, however, to develop a expression which also accounts for the PRNU and the
DCNU of the particular camera.1

To this end, it is assumed that a plane card of constant reflectance and uniformly illuminated is
imaged by the camera. The goal is to quantify the variation which could be found in the resulting
image with respect to the noiseless digital intensity value IcAc which would result in a perfect camera.
Clearly, every noise source contributes to the final uncertainty value. These contributions have already
been expressed somewhere within section 6.1. Table 6.1 puts them all together. As can be observed,
shot noise and dark current shot noise are given for a particular image cell (i, j). This dependency can

1 Obviously, it is also possible to calculate the uncertainty online during the execution of the vision algorithm
or to precalculate an uncertainty image for every image to process. In the first case, only values K(i, j) and
µdc(i, j) should be stored, requiring 2× 640× 480× 4 = 2, 457.600 bytes if real values are represented using
4 bytes. In the second case, memory should also be allocated to the uncertainty image and, consequently,
3×640×480×4 = 3, 686.400 bytes of storage would additionally be needed. Both solutions would, however,
require a larger time of processing as well as more than the 3× 256× 4 = 3.072 bytes needed by the solution
proposed here.
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Fig. 6.2. [left] Uncertainty curves which derive from equation 6.11 after a proper calibration of the camera
and a certain value of t, for the red colour channel. [right] Confidence interval [DR

a , DR
b ] corresponding to a

certain measurement DR.

be removed at the expense of the approximations K(i, j) ≈ 1 and µdc(i, j) ≈ EI [µdc], also made in [93].
That is to say, VarI [K] and VarI [µdc] are considered small so that the variation of the variances of
both shot noise sources can be assumed approximately constant across image cells for a fixed Ic.

From the independence of the noise sources, the total uncertainty is given by the sum in quadrature
of the different contributions [93]. In this way, equations 6.11 provide, in the form of expected value ±
uncertainty [272], a confidence interval for the final digital value returned by the camera, Dc, for every
possible digital intensity level, IcAc.

Dc = (IcAc + EI [µdc]A
c) ± tσc

I (6.11a)

σc
I =

√
VarI [K] (IcAc)

2
+ VarI [µdc] (Ac)

2
+ (IcAc)Ac + EI [µdc] (Ac)

2
+

(
σc

f

)2

(6.11b)

For a given t, equations 6.11 relate every possible intensity value IcAc with an interval of values
[Dc

a,Dc
b ] where the corresponding digital value returned by the camera can lie with a certain probability.

Resorting to the Chebyshev inequality2 [151], t = 2, 3 and 4 represent that the measurement Dc will
lie inside [Dc

a,Dc
b ] with, respectively, probabilities of 75.00%, 88.89% and 93.75%. If, besides, the

Poisson distributions associated to the shot noises are approximated by Gaussian distributions, and
the remaining noise sources are assumed Gaussian, the noise distribution results to be normal, and,
therefore, the previous probabilities for t = 2, 3 and 4 increase, respectively, up to 95.45%, 99.73%
and 99.99%. By way of example, figure 6.2(left) shows uncertainty curves (solid lines) for the red
colour channel of a hypothetical camera with the following set of radiometric parameters: AR = 0.002,
(σR

f )2 = 1.0, EI [µdc]A
R = 10,

√
VarI [µdc]A

R = 1.0 and
√

VarI [K] = 0.006. In the figure, the lower

curve corresponds to the ‘-’ sign of equation 6.11a and therefore gives DR
a for every IRAR, while

the upper curve is for the ‘+’ sign and DR
b for every IRAR. In the example, an exaggerated value,

12, for t is used just for illustration purposes. Besides, the dashed horizontal straight line at the
bottom corresponds to EI [µdc]A

R, while the slanted dashed line between the two uncertainty curves
is DR = IRAR + EI [µdc]A

R.
Note that, however, equations 6.11 go from the noiseless intensity values to the measurements

produced by the camera, although only the latter are effectively available. Therefore, the relationship
must be reversed to be useful: i.e. given a measure Dc, an interval of possible noiseless intensities,
[(IcAc)a, (IcAc)b], must be looked for (see figure 6.2(right)). (IcAc)a and (IcAc)b can be easily obtained
reversing equation 6.11a to get equation 6.12, which involves a second degree polynomial in IcAc:

2 For any constant k > 0, if a random variable X has mean µ and standard deviation σ, then P (|X − µ| ≥
kσ) ≤ 1

k2 .
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b − DR and tσR, for t = 3. [right]
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b − DR and tσR, for t = 1..10.

(
1 − t2VarI [K]

)
(IcAc)2 − (t2Ac + 2(Dc − EI [µdc]A

c))(IcAc)+

(Dc − EI [µdc]A
c)2 − t2

(
VarI [µdc](A

c)2 + EI [µdc](A
c)2 + (σc

f )2
)

= 0 . (6.12)

Once (IcAc)a and (IcAc)b are known for a certain Dc, a confidence interval [Dc
a,Dc

b ] can be calculated
for Dc by means of Dc

a = (IcAc)a + EI [µdc]A
c and Dc

b = (IcAc)b + EI [µdc]A
c (see figure 6.2(right)).

Although this interval is not symmetric around Dc, a slight deviation has been observed for
reasonable values of t and for the noise parameter values typically reported in the related litera-
ture [93, 262, 270] and the camera used in our experiments. Moreover, the differences Dc − Dc

a and
Dc

b − Dc have been quite similar to tσc
I (equation 6.11b) for low values of t. This fact is shown, for

the red colour channel, in figure 6.3(left) for t = 3, while figure 6.3(right) plots the maximum discrep-
ancy for several values of t, also for the red colour channel. In both plots, AR = 0.002, (σR

f )2 = 1.0,

EI [µdc]A
R = 10,

√
VarI [µdc]A

R = 1.0 and
√

VarI [K] = 0.006, as before. As can be observed, up to
approximately t = 7 the maximum discrepancy, attained for DR = 255, lies below 0.5. Given that
t = 2, 3, 4 are reasonable values for t by virtue of its statistical meaning, and given the later comments,
it is clear that Dc ± tσc

I can result to be a simpler way for computing a meaningful confidence interval
for Dc without solving equation 6.12, so that σc

D ≈ σc
I .

6.3 Previous Work

In contrast with geometric calibration, for which lots of algorithms have been published, the radiometric
calibration of vision cameras has been rarely studied within the vision research community. Healey
and Kondepudy presented in [93] a monochrome camera noise model from where they derived several
techniques based on plane cards to estimate the gain, the charge-independent noise, the DCNU and
the PRNU. In their paper, the camera gain and the charge-independent noise were simultaneously
estimated by linear regression using a set of difference images of a plane card taken with different
neutral density filters placed in front of the camera. As for dark current, the authors propose to use
a series of images taken in a dark environment (i.e. without removing the camera optics cap), while,
regarding the PRNU, they suggest using a set of images of a plane card taken under different imaging
configurations such that, for each configuration, every collection site images a different patch of the
card illuminated by a different part of the source, i.e. the light source and the card are moved for each
configuration. In this way, the effects of a spatially non-uniform illumination and surface reflectance
are removed. The PRNU parameters are then estimated subtracting first an average dark image from
every image of the plane card, to remove the dark current intensity, and dividing, next, the intensity
at every point involved in the analysis by the average intensity over a 9 × 9 window of neighbours,
which is supposed to be free of the effect of K.
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After the paper by Healey and Kondepudy, Tarel proposed in [269, 270] several experiments for
estimating the charge-independent noise, the dark current —using images taken under a dark envi-
ronment again— and the joint effect of the fixed pattern array and the shadowing introduced by the
camera optics due to vignetting. In all the cases, plane calibration cards were used. The calibration
results were illustrated executing two common tasks in computer vision, edge detection and image
segmentation, over the original and the corrected images.

Finally, Stokman makes use of a camera noise model consisting of camera gain, shot noise and dark
current for error propagation inside an edge-detection framework [80, 262]. The author estimates the
gain and the dark current variance using a series of images of a white reference card varying the lens
aperture.

6.4 Experimental Results

Results for the radiometric calibration of the JAI CV-M70 camera used for assessing the performance
of the lighting estimation methods are provided in this section, together with examples of the applica-
tions discussed in section 6.2. As before, halogen illumination and a COMET Matrox frame grabber
complement the imaging equipment. White calibration cards are used to estimate the noise distribu-
tion parameters, although the particular reflectance is not relevant during the radiometric calibration
provided that it is uniform.

Again, as a general rule throughout this section, uncertainties δx̂ corresponding to estimates x̂ are
calculated through standard formulas when x̂ comes from a regression analysis, while, for averaged
values, the Standard Deviation Of Mean, σx = σx√

N
, is used [272].

6.4.1 Estimation of noise distribution parameters

Both spatial and charge-independent non-spatial noise distribution parameters were measured by
means of 12 sets of images of the calibration card, each set corresponding to a different lens aperture.
Besides, each set of images consisted of 100 frames. For every set, images µDc(i, j) and σ2

Dc(i, j) were
calculated, which, in particular, taking into account table 4.2, allowed reducing the non-spatial noise
in images µDc(i, j) at about only 10% of their original magnitude, improving, thus, the calculation of
EI [µDc ] and VarI [µDc ] (equations 6.5). Moreover, up to 12 different values for Ic = (Laρb)

c+mb(Ldρb)
c

could be generated to produce 12 pairs (EI [µDc ],VarI [µDc ]) and (EI [µDc ],EI [σ
2
Dc ]) for estimating

the PRNU and the DCNU distribution parameters and the gain and charge-independent non-spatial
noise of the camera under calibration. Finally, the estimation procedures were applied over the central
100×100 part of the images, in order to avoid the effects of nonuniform illumination and the distortion
introduced by the camera optics (section 2.4.5).

With this set of images, camera gain Ac and the variance of the charge-independent non-spatial noise
(σc

f )2 were estimated for every colour channel c following pseudocode 6.2. Moreover, in order to force

the parameters of the straight line to be positive, according to the signs of Ac and (σc
f )2, non-negative

least squares [138] was used. The resulting estimates were (AR, AG, AB) = (0.0046, 0.048, 0.074) ±
(0.0012, 0.0016, 0.0018) and (σR

f , σG
f , σB

f ) = (0.79, 0.59, 0.51) ± (0.04, 0.06, 0.06), while the correlation
coefficients for all three colour channels resulted to be (0.9634,0.9625,0.9761). By way of illustration,
figure 6.4 shows the fittings corresponding to the different colour channels.

On the other hand, VarI [K], EI [µdc]A
c and VarI [µdc](A

c)2 were measured following pseudocode 6.1.
In order to improve the quality of the estimates, after the linear regression analysis performed
to estimate the parameters of the parabola, a non-linear optimization refinement step based on
equation 6.5b was applied next using as starting values for VarI [K], EI [µdc]A

c and VarI [µdc](A
c)2

the ones corresponding to the output of the linear optimization step. In the linear step, non-
negative least squares were used again. The measurements resulting for every colour channel were
(
√

VarI [K]R,
√

VarI [K]G,
√

VarI [K]B) = (0.0056, 0.0061, 0.0056)±(0.0006, 0.0004, 0.0004), (EI [µdc]A
R

EI [µdc]A
G,EI [µdc]A

B) = (0.00, 0.00, 0.00) ± (13.01, 6.83, 7.70) and (
√

VarI [µdc]A
R,

√
VarI [µdc]A

G,
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Fig. 6.4. Estimation of camera gain and charge-independent non-spatial noise.
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Fig. 6.5. Estimation of the PRNU and DCNU distribution parameters by means of different parabolas for
every colour channel [upper row] and by means of centered parabolas sharing the first coefficient [lower row].

√
VarI [µdc]A

B) = (0.20, 0.17, 0.20) ± (0.03, 0.02, 0.02). The upper row of figure 6.5 shows the fitting
parabola for every colour channel.

As can be observed, three slightly different values resulted for VarI [K], one from every channel,
while all three should coincide since the internal organization of the camera under calibration is based
on one CCD. On the other hand, the confidence interval for the estimates of EI [µdc]A

c were too large
so as to accept them; however, the intervals for the other parameters resulted to be quite acceptable.
Because of this, a new regression analysis was performed with the intention of improving the calibration.
On the one hand, the distribution parameters of the DCNU were measured averaging 100 images taken
with the lens cap on (i.e. in a dark environment) and calculating, in turn, the mean and variance of the
average image. As a result, a value of 0 resulted for both the spatial mean and variance. Since the mean
calculated in this way coincided with the one from the regression analysis, and could be corroborated
from the fact that intensity levels of 1 are also returned by the camera under calibration, this mean was
accepted as a correct estimate. As for the variance, a value of 0 seemed quite suspicious, and with the
intention of being more conservative with the estimations, it was rejected. Setting EI [µdc]A

c to 0 for all
colour channels, pairs (EI [µDc ]−EI [µdc]A

c,VarI [µDc ]) = (EI [µDc ],VarI [µDc ]) were fitted by centered
parabolas, according to equation 6.5a, ensuring they all shared the same first coefficient VarI [K] (see
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Table 6.2. Comparison of the estimates resulting from the radiometric calibration.

Healey and Kondepudy’s
1st execution 2nd execution 1st execution 2nd execution

A (0.0046,0.0048,0.0074) (0.0065,0.0053,0.0096) (0.0031,0.0027,0.0047) (0.0042,0.0028,0.0064)

σf (0.79,0.59,0.71) (0.68,0.54,0.65) (0.80,0.62,0.77) (0.70,0.56,0.69)

√
VarI [K] 0.0057 0.0059 0.0069

EI [µdc]A (0,0,0) (0,0,0) (0,0,0)

√
VarI [µdc]A (0.20,0.17,0.20) (0.17,0.16,0.18) (0,0,0)

appendix A for a description about the fitting method employed)3. In this case, the estimates were√
VarI [K] = 0.0057±0.0001 and (

√
VarI [µdc]A

R,
√

VarI [µdc]A
G,

√
VarI [µdc]A

B) = (0.20, 0.17, 0.20)±
(0.01, 0.01, 0.01), while the correlation coefficients resulted to be (0.9976,0.9939,0.9944). The lower row
of figure 6.5 shows the fitting parabola for every colour channel. As can be noticed, the values obtained
for the spatial variance of the DCNU are quite close to the values obtained in the previous regression
analysis, while the spatial variance of the PRNU is among the three values obtained before.

The previous procedures were re-executed with a different set of images, but the same camera,
in order to be able to observe the robustness of the calibration algorithm. The previous estimates
and the new ones are provided in table 6.2 to make easier the comparison. Furthermore, in the same
table, results for the Healey and Kondepudy’s calibration algorithm (H&K) [93] are also provided.
When calibrating the camera by means of H&K, the first and second images of every set were used
to calculate the difference images needed by this algorithm to estimate Ac and (σc

f )2. As for the
determination of the distribution parameters of the PRNU and the DCNU, a different set of images
was needed, which were taken using the instructions detailed in [93]; because of this, the part of the
calibration related to the PRNU and the DCNU was executed only once for H&K.

As can be observed, some slight deviations between executions are observed in both methods as
for the estimations of Ac and σc

f . On the other hand, H&K tends to yield lower values than R2CIU

for Ac (the slope of the straight line) but similar values as R2CIU for σc
f (the intercept with the

Y axis). This seems to be caused by the way how the fitting points are generated in H&K. In this
algorithm, points ((EI [D

c
1] + EI [D

c
2])/2,VarI [D

c
1 − Dc

2]/2) are used, where Dc
1 and Dc

2 are the two

3 In fact, equations 6.5 can be transformed so that the estimation of the distribution parameters of both the
PRNU and the DCNU are independent of the colour channel, dividing both sides by (Ac)2 as shown next:

VarI [µDc ]

(Ac)2
= VarI [K]

(
EI [µDc ]

Ac

)2

− 2VarI [K]EI [µdc]

(
EI [µDc ]

Ac

)
+ VarI [K] (EI [µdc])

2 + VarI [µdc] .

(6.13)

In this way, the fitting should be performed over the pairs (VarI [µDc ] /(Ac)2, EI [µDc ]/Ac). This fact implies,
however, to estimate previously Ac and then use the estimation to generate the fitting points. This is a way
of action which, if possible, should be avoided in order to prevent the uncertainty in the Ac value from
affecting the estimation of the distribution parameters of the PRNU and the DCNU.
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Fig. 6.6. Examples of synthetic noisy images generated by pseudocode 6.3.

images mentioned above. These points intend to play the same role as the ones required by R2CIU,
although, while (EI [D

c
1]+EI [D

c
2])/2 (used in H&K) and EI [µDc ] (used in R2CIU) tend to take similar

values, VarI [D
c
1 −Dc

2]/2 (used in H&K) tends to be more optimistic (i.e. lower variance) than EI [σ
2
Dc ]

(used in R2CIU). As a result, lower slope straight lines are returned by H&K with regard to R2CIU.
As for the distribution parameters of the PRNU and the DCNU, R2CIU gives rise to almost

identical estimates in both executions of the camera calibration. On the other hand, R2CIU and H&K
return similar or identical values for VarI [K] and EI [µdc]A

c, while a value of 0 is returned by H&K
for VarI [µdc](A

c)2. This is because H&K uses images taken in a dark environment to estimate both
EI [µdc]A

c and VarI [µdc](A
c)2.

6.4.2 Generation of noisy synthetic images

Just by way of illustration, figure 6.6 presents some synthetic images generated using the pseudocode 6.3
and two sets of radiometric performance parameters. The first one coincides with the first execution of
R2CIU (section 6.4.1). The second set of parameters corresponds to a noisier imaging device, for which
A = (0.0020, 0.0020, 0.0020), σf = (1.00, 1.00, 1.00), VarI [K] = 0.0200, EI [µdc]A = (10.0, 10.0, 10.0)

and
√

VarI [µdc]A = (1.00, 1.00, 1.00). A histogram for every colour channel appears next to the cor-
responding image to be able to appreciate the amount of noise introduced for every parameter set.

6.4.3 Determination of irradiance measurement uncertainties

Figure 6.7 contains several plots regarding the computation of intensity uncertainties according to
equations 6.11 and 6.12. The averaged parameters between the two executions of R2CIU have been
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Fig. 6.7. Estimation of intensity uncertainties for every colour channel: [1st row] Value of tσc
I of equation 6.11

for t = 3. [2nd row] Value of Dc − Dc
a and Dc

b − Dc for t = 3. [3rd row] Maximum discrepancy between
Dc − Dc

a, Dc
b − Dc and tσc

I for t = 1..10. [4th row] Corresponding Signal-to-Uncertainty Ratio, computed as

SUR = log10

(
Dc

σc
D

)
.

used in all cases. On the one hand, the first row plots tσc
I of equation 6.11b for t = 3 against IcAc

for every colour channel. The following row corresponds to Dc
a and Dc

b using equation 6.12 and adding
EI [µdc]A

c to the (IcAc)a and (IcAc)b resulting values. Observe that tσc
I is also plotted to compare

with Dc
a and Dc

b . The third row shows the extent to which the approximation σc
I can serve as a valid

approximation of σc
D. As can be noticed, for the parameters obtained from the calibration of the

camera, up to t = 6 the maximum discrepancy is below 0.5. In the same figure, the fourth row plots
a sort of Signal-to-Noise Ratio for every digital value Dc which is called Signal-to-Uncertainty Ratio
and that is calculated as SUR = log10 (Dc/σc

D). Finally, table 6.3 details the values of σc
D and Dc±σc

D

for a certain range of values of Dc, while figure 6.8 compares predicted uncertainties with the real
uncertainties found in real images of plane cards taken with different lens apertures. In this last figure,
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Table 6.3. Excerpt of the uncertainty table for the red, green and blue colour channels.

D
c

D
R
a D

R
b σDR D

G
a D

G
b σDG D

B
a D

B
b σDB

0 -0.76 0.76 0.76 -0.59 0.59 0.59 -0.71 0.71 0.71

1 0.24 1.76 0.76 0.41 1.59 0.59 0.29 1.71 0.71

2 1.23 2.77 0.77 1.40 2.60 0.60 1.28 2.72 0.72

3 2.23 3.77 0.77 2.40 3.60 0.60 2.28 3.72 0.72

4 3.23 4.77 0.77 3.39 4.61 0.61 3.27 4.73 0.73

5 4.22 5.78 0.78 4.39 5.61 0.61 4.26 5.74 0.74

6 5.22 6.78 0.78 5.39 6.61 0.61 5.26 6.74 0.74

7 6.22 7.78 0.78 6.38 7.62 0.62 6.25 7.75 0.75

8 7.21 8.79 0.79 7.38 8.62 0.62 7.25 8.75 0.75

9 8.21 9.79 0.79 8.37 9.63 0.63 8.24 9.76 0.76
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.

110 108.74 111.26 1.26 108.86 111.14 1.14 108.64 111.36 1.36

111 109.73 112.27 1.27 109.85 112.15 1.15 109.64 112.36 1.36

112 110.73 113.27 1.27 110.84 113.16 1.16 110.63 113.37 1.37

113 111.72 114.28 1.28 111.84 114.16 1.16 111.63 114.37 1.37

114 112.72 115.28 1.28 112.83 115.17 1.17 112.62 115.38 1.38

115 113.71 116.29 1.29 113.83 116.17 1.17 113.61 116.39 1.39

116 114.71 117.29 1.29 114.82 117.18 1.18 114.61 117.39 1.39

117 115.70 118.30 1.30 115.82 118.18 1.18 115.60 118.40 1.40

118 116.70 119.30 1.30 116.81 119.19 1.19 116.60 119.40 1.40

119 117.69 120.31 1.31 117.81 120.19 1.19 117.59 120.41 1.41
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.

246 244.01 247.99 1.99 244.10 247.90 1.90 243.85 248.15 2.15

247 245.00 249.00 2.00 245.09 248.91 1.91 244.84 249.16 2.16

248 246.00 250.00 2.00 246.08 249.92 1.92 245.84 250.16 2.16

249 246.99 251.01 2.01 247.08 250.92 1.92 246.83 251.17 2.17

250 247.98 252.02 2.02 248.07 251.93 1.93 247.83 252.17 2.17

251 248.98 253.02 2.02 249.07 252.93 1.93 248.82 253.18 2.18

252 249.97 254.03 2.03 250.06 253.94 1.94 249.81 254.19 2.19

253 250.97 255.03 2.03 251.06 254.94 1.94 250.81 255.19 2.19

254 251.96 256.04 2.04 252.05 255.95 1.95 251.80 256.20 2.20

255 252.96 257.04 2.04 253.05 256.95 1.95 252.80 257.20 2.20

real uncertainties for two different sets of images have been plotted, labelled as real-1 and real-2. As
can be observed, real and predicted uncertainties compare well, with, perhaps, a larger difference for
the blue channel.

6.4.4 An example on the use of intensity uncertainties

To illustrate the use of the uncertainty estimates produced by R2CIU, an edge detection task based
on detecting LOG zero-crossings is next presented. In this case, uncertainties are used to devise a
strategy for adaptive thresholding which will be called UTLOG (Uncertainty-based Thresholding for
LOG zero-crossings). In particular, a detected LOG zero-crossing is classified as relevant if the positive
and negative peak LOG values along the direction of detection are larger than t times the respective
uncertainties. Those uncertainties are computed using standard uncertainty propagation rules, by
which, if the output of the LOG operator is calculated as f =

∑
x Dk(x)m(x), where m(x) would be the
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Fig. 6.8. Predicted versus real uncertainties for all colour channels.
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Fig. 6.9. Illustration of UTLOG: (a) only the LOG zero-crossing behind the circle is considered relevant by
UTLOG; (b) example of noisy synthetic image; (c) resultant edge map for t = 3.

LOG mask constants, then δ(f) =
√∑

x δ(Dk(x))2m2(x) [272]. By way of example, see figure 6.9(a),
where only the zero-crossing under the circle would be considered relevant. Figure 6.9(c) shows the
edge map corresponding to the synthetic image on its left.

In order to study the performance of UTLOG, and, by extension, the usefulness of the estimated
uncertainties, UTLOG was compared with a non-adaptive method which will be called NATLOG (Non-
Adaptive Thresholding for LOG zero-crossings) in which LOG zero-crossings was selected by requiring
negative and positive LOG peaks above a global threshold independent of the intensities involved.
The goal of the experiment consisted in determining the optimum value of the only parameter of each
algorithm (t for UTLOG and the aforementioned threshold for NATLOG) for each image of a series of
noisy synthetic images. A lower standard deviation of the optimum values found would mean, in this
experiment, a larger easiness for finding the proper value and, thus, a larger adaptivity. Furthermore,
the standard deviation of the LOG operator was set to 1.0 in all cases. The details of the experiment
are provided next:

• The comparison was performed over two sets of 100 synthetic images to which noise was added
according to the camera noise parameters estimated in section 6.4.1 following pseudocode 6.3. One
set corresponded to scenes involving spheres and planes of different reflectances (see figure 6.9(b) for
an example), while the other set only imaged planes, and, therefore, implied, a priori, less difficulty
for detecting the correct edges for a strategy based on LOG zero-crossings.

• Besides, up to four empirical discrepancy evaluation measures were used to find the optimum
values: the often-cited Pratt’s Figure of Merit (FOM) [232] with (1) α = 1/9 and (2) α = 1; (3) the
discrepancy percentage (D) [239, 306]; and (4) the Baddeley measure [6]. In this way, the result of
the experiment did not depend on the optimization strategy employed.

• As for the range of values considered for the respective parameters, for UTLOG, t ∈ [1..15], while,
for NATLOG, global integer thresholds between 1 and 30 were considered. As can be observed,
the range of values is sufficiently large so as to allow the optimization strategy to find the global
maximum (for FOM) or minimum (for D and Baddeley’s measures).
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The quantitative results of the experiment appear in figure 6.10. All these quantities come from a
matrix M100×N containing the evaluation measures, where every row of M corresponds to one image
of the set, and every column is a value of the respective parameter (N = 15 for UTLOG and N = 30
for NATLOG). The following quantities are computed from M : (In the following, E [·] and Var [·] stand
for, respectively, mean and variance, while arg best corresponds to arg max for FOM and to arg min
for the rest of evaluation measures.)

• avgP and stdP : respectively, average and standard deviation of the parameter values for which
the best evaluation measure is attained for every image,

avgP = E
i=1..100

[
arg best
j=1..N

{M(i, j)}
]

(6.14)

stdP =

√
Var

i=1..100

[
arg best
j=1..N

{M(i, j)}
]

(6.15)

• avgM1: average of the best measure values among all the images,

avgM1 = E
i = 1..100

j = arg best
k=1..N

{M(i, k)}

[M(i, j)] (6.16)

• avgM2: minimum and maximum average of the evaluation values attained for every value of the
parameter,

avgM2 =

[
min

j=1..N

{
E

i=1..100
[M(i, j)]

}
, max
j=1..N

{
E

i=1..100
[M(i, j)]

}]
(6.17)

• range: range of evaluation values achieved throughout the experiment,

range =


 min

i = 1..100
j = 1..N

{M(i, j)} , max
i = 1..100
j = 1..N

{M(i, j)}


 (6.18)

Besides, in the tables, the value of the parameter for which the best evaluation value was attained is
indicated in parenthesis (columns avgM2 and range).

As can be observed in the tables of figure 6.10, the standard deviation of the parameter values
(column stdP , in bold face in the tables) is quite lower for UTLOG than for NATLOG in all cases.
Besides, for UTLOG, t ∈ [3..5] seem to work well most times, while for NATLOG the global threshold
interval seems to widen so as to cover values between 5-6 and 11-12, or more, confirming, thus, the
higher adaptivity of UTLOG thanks to the incorporation of intensity uncertainties in the thresholding.
As for the evaluation measures attained, at the optima, they are almost identical for both cases, but
the other end of the intervals are always better for UTLOG than for NATLOG (columns avgM2 and
range).

6.5 Conclusions

An algorithm called R2CIU (Robust Radiometric Calibration and Intensity Uncertainty estimation) for
radiometric camera calibration has been proposed. It consists of pseudocodes 6.1 and 6.2 and allows
estimating the distribution parameters of the noise sources of the camera noise model proposed by
Healey and Kondepudy in [93], described in section 2.4.4. Besides, two applications of the radiometric
calibration of CCD cameras have also been discussed, namely synthesis of noisy images for testing
purposes, and estimation of intensity uncertainties, both according to the radiometric performance of
a particular camera, or, in other words, a particular set of camera noise model parameters.

More precisely, R2CIU is based on uniform reflectance calibration cards. Besides, the fact that all
the pixels of the captured image can participate in the estimation makes R2CIU a robust estimator
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measure
UTLOG NATLOG

avgP stdP avgM1 avgM2 range avgP stdP avgM1 avgM2 range

FOM(1/9) 2.71 0.59 0.901 [0.550,0.881(3)] [0.333,0.974(4)] 6.01 1.22 0.913 [0.328,0.889(5)] [0.198,0.964(8)]

FOM(1) 3.13 0.42 0.806 [0.363,0.801(3)] [0.225,0.921(4)] 6.32 1.19 0.811 [0.185,0.990(6)] [0.100,0.910(6)]

D 5.66 1.78 0.025 [0.026(5),0.182] [0.009(4),0.236] 12.60 4.53 0.026 [0.027(11),0.470] [0.010(8),0.549]

Baddeley 6.03 2.30 0.347 [0.360(5),2.979] [0.205(4),3.419] 13.48 5.03 0.359 [0.379(11),3.884] [0.209(9),4.231]

(b) Only-Planes set

measure
UTLOG NATLOG

avgP stdP avgM1 avgM2 range avgP stdP avgM1 avgM2 range

FOM(1/9) 2.47 1.17 0.963 [0.567,0.959(2)] [0.329,1.000(1)] 6.44 3.13 0.967 [0.391,0.959(6)] [0.211,1.000(1)]

FOM(1) 2.67 1.22 0.934 [0.430,0.925(2)] [0.220,1.000(1)] 6.64 3.13 0.936 [0.262,0.929(7)] [0.112,1.000(1)]

D 4.28 2.15 0.010 [0.011(3),0.160] [0.000(2),0.242] 10.33 4.54 0.010 [0.011(8),0.505] [0.000(6),0.710]

Baddeley 7.01 3.67 0.206 [0.236(3),3.084] [0.000(2),4.051] 17.77 8.08 0.200 [0.236(10),3.957] [0.000(6),4.729]

(c) Spheres & Planes set (only avgP and stdP) (d) Only-Planes set (only avgP and stdP)
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Fig. 6.10. Quantitative results of the comparison between UTLOG and NATLOG.
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of the noise model parameters. Nevertheless, special care should be taken when calibrating cameras
with an only CCD since the demosaicking process can introduce a certain level of correlation between
pixel values, what could compromise the accuracy of the estimates. In this case, using the pattern of
the colour filter array to select the image cells corresponding to each colour channel and avoid the
interpolated pixels can solve the problem (see figure 2.11). Another solution could be to use raw pixel
values in case the camera is able to produce images in RAW format [236].

R2CIU has been compared against itself using two sets of calibration images taken at different time
instants with slight deviations in the parameters estimated for both sets. It also compares favourably
with the algorithm by Healey and Kondepudy [93], showing a similar behaviour but a somewhat simpler
use.

Finally, examples of the applications of the radiometric calibration of CCD cameras have been pro-
vided. In particular, an uncertainty table has been built which predicts an uncertainty of approximately
±2 intensity levels at maximum intensity level.





7

Image Segmentation by Scene Reconstruction

Making use of equation 4.7, a region-growing approach called IS2R (Image Segmentation by Scene
Reconstruction) is presented in this chapter. It is based on estimating the surface reflectance and
using it as a homogeneity criterion to join pixels to the currently grown region. To this end, the scene
shape is (partially) reconstructed from the image data. The term quantitative can also be used for
this approach because it heavily relies on the numerical aspects of the formation of the image. That
is to say, reflectance, light distribution and scene geometry numerical estimations are essential in the
process of image partitioning.

Section 7.1 depicts the model of image formation assumed by IS2R. Next, section 7.2 overviews the
general method, and the details are given in sections 7.3, 7.4, 7.5 and 7.6. Some segmentation anomalies
are discussed in section 7.7. Later, section 7.8 discusses how IS2R could handle some extensions to
the model of image formation. Next, section 7.9 presents the experiments performed, and, finally,
section 7.10 concludes the chapter.

7.1 Model of Image Formation

The image formation model assumed by IS2R is simpler than the one presented in chapter 4. This is
because of the quantitative nature of the method itself; more precisely, the technique used to reconstruct
the shape of scene objects, which is essential as will be seen later, requires some constraints to be met
about the formation of the image.

The features of the simplified model are summarized next:

(1) Only matte surfaces are considered. Therefore, specularities are not expected, and the correspond-
ing terms can be removed from equation 4.1. A further implication of this simplification is the fact
that ρa, which is usually considered as a linear combination of ρb and ρi, turns out to be ρa = ρb,
and only ρb needs, thus, to be included in the new model of image formation.

(2) The lighting distribution consists of: (a) one point light source located at infinity, whose strength
is uniform throughout the scene; and (b) ambient light, also of uniform strength. As the scene is
illuminated only by one directional light source, ls = 1 in equation 4.1, and, accordingly, k can be
removed from sk(i, j) in equation 4.2. On the other hand, if such directional light source can be
considered a point and it is located at infinity, then s(i, j) is independent of the image location
(i, j). That is to say, illumination is considered parallel (i.e. collimated) throughout the scene.

(3) The focal length of the camera is assumed large enough so that parallel projection can be considered
a good approximation of perspective. Being this the case, scene locations p = (x, y, z) are such that
x = i and y = j.

(4) As for the camera, only gray-level images are included in the model. Therefore, the term τ c(λ)
corresponding to colour filter c is also removed from the image formation equation.

The resulting image formation model is expressed in equation 7.1:
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D(i, j) = q0

∫

Λ

La(λ)ρb(i, j;λ)s(λ) dλ

+ q0 (n(i, j) · s)

∫

Λ

Ld(λ)ρb(i, j;λ)s(λ) dλ (7.1)

where D refers to the gray-level nature of the image.
It is common practice to introduce a further simplification for every material M in the scene,

consisting in the following approximations (see [304] and more recently [28, 55, 105, 154, 299], among
many others):

∫

Λ

La(λ)ρMb (i, j;λ)s(λ) dλ ≈ LaρMb (i, j) (7.2)

∫

Λ

Ld(λ)ρMb (i, j;λ)s(λ) dλ ≈ Ldρ
M
b (i, j) (7.3)

That is to say, the non-geometric parts of the ambient lighting and body reflection terms are approx-
imated by a product of two factors independent of wavelength and related to, respectively, surface
reflectance at location (i, j), ρb(i, j), and to illumination, La and Ld.

Note that those approximations, though traditionally not explicitly stated, implicitly assume that,
either (1) and/or (2) below take place: (In the expressions below, the location coordinates (i, j) have
been removed to make the notation easier.)

(1) For every material M in the scene:
∫

Λ
La(λ)ρMb (λ)s(λ) dλ∫

Λ
La(λ)s(λ) dλ

≈ ρ̃Mb (7.4)

∫
Λ

Ld(λ)ρMb (λ)s(λ) dλ∫
Λ

Ld(λ)s(λ) dλ
≈ ρ̃Mb (7.5)

so that:
∫

Λ

La(λ)ρMb (λ)s(λ) dλ ≈
(∫

Λ

La(λ)s(λ) dλ

)
ρ̃Mb = Laρ̃Mb (7.6)

∫

Λ

Ld(λ)ρMb (λ)s(λ) dλ ≈
(∫

Λ

Ld(λ)s(λ) dλ

)
ρ̃Mb = Ldρ̃

M
b (7.7)

Note that ρb(λ) = ρb ,∀λ, is a particular case for which equations 7.4 and 7.5 are simultaneously
satisfied. Finally, the validity of the approximation would depend on the following sum:

V =
∑

M

(∫
Λ

La(λ)ρMb (λ)s(λ) dλ∫
Λ

La(λ)s(λ) dλ
−

∫
Λ

Ld(λ)ρMb (λ)s(λ) dλ∫
Λ

Ld(λ)s(λ) dλ

)2

(7.8)

The larger V , the less valid would be the approximation.
(2) For every material M in the scene:

∫
Λ

La(λ)ρMb (λ)s(λ) dλ∫
Λ

ρMb (λ)s(λ) dλ
≈ L̃a (7.9)

∫
Λ

Ld(λ)ρMb (λ)s(λ) dλ∫
Λ

ρMb (λ)s(λ) dλ
≈ L̃d (7.10)

so that:
∫

Λ

La(λ)ρMb (λ)s(λ) dλ ≈ L̃a

(∫

Λ

ρMb (λ)s(λ) dλ

)
= L̃aρMb (7.11)

∫

Λ

Ld(λ)ρMb (λ)s(λ) dλ ≈ L̃d

(∫

Λ

ρMb (λ)s(λ) dλ

)
= L̃dρ

M
b (7.12)
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Note that white illumination, i.e. La(λ) = La and Ld(λ) = Ld ,∀λ, is a particular case for which
equations 7.9 and 7.10 are simultaneously satisfied. In this case, the validity of the approximation
would depend on the following two sums:

V1 =
∑

M1 6=M2

(∫
Λ

La(λ)ρM1

b (λ)s(λ) dλ∫
Λ

ρM1

b (λ)s(λ) dλ
−

∫
Λ

La(λ)ρM2

b (λ)s(λ) dλ∫
Λ

ρM2

b (λ)s(λ) dλ

)2

(7.13)

V2 =
∑

M1 6=M2

(∫
Λ

Ld(λ)ρM1

b (λ)s(λ) dλ∫
Λ

ρM1

b (λ)s(λ) dλ
−

∫
Λ

Ld(λ)ρM2

b (λ)s(λ) dλ∫
Λ

ρM2

b (λ)s(λ) dλ

)2

(7.14)

The larger V1 + V2, the less valid would be the approximation.

Irrespective of the case, the satisfaction of equations 7.2 and 7.3 will be assumed from now on.
Furthermore, factor q0 from equation 7.1 will be considered embedded in either ρb(i, j), La or Ld, so
that the definitive model of image formation will be given by equation 7.15:

D(i, j) = (Laρb(i, j)) + (n(i, j) · s) (Ldρb(i, j)) (7.15)

7.2 Overview of IS2R

7.2.1 Basic strategy

According to equation 4.7, surface reflectance can be determined if the lighting distribution and the
scene geometry are known. If the image formation model corresponds to equation 7.15, then function F
can be reversed (i.e. an expression for F−1 can be obtained), and surface reflectance can be recovered:

ρb(i, j) = F−1(D(i, j),n(i, j), s, La, Ld) =
D(i, j)

La + (n(i, j) · s)Ld
(7.16)

In this way, the segmentation process just consists in joining pixels with similar reflectance.
In order to apply equation 7.16, La, Ld, s and n(i, j) must be known in advance. In particular,

knowing n(i, j) for every image pixel implies having determined the shape of the scene —the estimation
need not be complete, it suffices with the surface normal vectors of the visible points of the scene. To
this end, a procedure capable of producing shape information from images must thus be embedded
within the segmentation process. Accordingly, shape from X methods are briefly revised in the following
sections.

7.2.2 Shape from X methods

In the computer vision literature, the term shape from X refers to a family of methods aiming at
obtaining a shape description of the imaged scene, where X represents the cue which, mostly inspired
in human vision, is used to compute the shape information. Among the different methods (see [119,217]
for a survey), some are based on the information contained in a single image, while others require a
special image acquisition infrastructure in order to take several images of the same scene, but varying
one of the parameters of the imaging system in a controlled way.

Shape from shading and shape from texture are examples of the first group. The former yields shape
information by analyzing the brightness variations in the image due to the scene objects curvature (i.e.
their shading in the image). In the latter, the shape information is produced from the distortion suffered
by individual textons1 during the imaging process.

Shape from stereo, shape from motion and shape from photometric stereo are examples of the
second group. In the first case, disparities between images seen from slightly different viewpoints (by,

1 The term texton was introduced by Julesz in [114] as the supposed unit of pre-attentive human texture
perception. They are also known as texels.
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perhaps, a binocular pair of cameras) are exploited to estimate scene shape. In the second case, a
time image sequence is used in conjunction with knowledge about the corresponding trajectory of the
camera; a moving camera is therefore needed. Finally, the third method is based on taking images with
different illumination conditions and using the brightness variations together with knowledge about
the lighting in every case. In this third example, a set of light sources with proper mechanisms to turn
each one on and off as required is thus needed.

Part of these methods are discarded regarding their use in the segmentation process by their very
nature. This is the case of shape from texture and shape from stereo: both need textured surfaces
to produce accurate results, case in which a segmentation according to surface reflectance does not
make much sense. Among the remaining methods, shape from shading seems the most attractive for a
segmentation strategy in the sense that no special infrastructure needs to be arranged to obtain shape
information, and this is the reason why it is used in the segmentation method which is proposed.

7.2.3 Shape from Shading

The shape from shading (SFS) problem was formerly formulated by Horn in the 1970s in his doctoral
thesis as “given an intensity image of a continuous surface with constant, known reflectance and

illumination, recover the shape of the surface” [100]. The SFS problem is usually expressed as solving
for n(i, j) in the so-called brightness equation E(i, j) = R(n(i, j)), where E(i, j) is the total irradiance
at image point (i, j), which would be substituted by D(i, j) since the intensity is a well-behaved
function of brightness (equation 2.32), and R(n(i, j)) is the reflectance map, a mapping between n

and the irradiance values E, already discussed in section 2.3.1.
Since Horn’s seminal work, several algorithms have been proposed (see [17,24,38,141,225,283,300,

311], among others), a comprehensible survey of which, together with a performance evaluation of the
algorithms surveyed, can be found in [302–304] and also in [119]. Most SFS algorithms make some
assumptions in order to obtain a solution of the brightness equation [119]:

• the light distribution is uniform throughout the scene and comes from a distant point light source
with both unit direction s and radiance Ld known;

• the scene just contains one object, or at least, if there is more than one, they can be distinguished
in the image by means of a previously computed segmentation;

• the surface reflection properties of scene objects are known, and in particular they obey the Lam-
bert’s Cosine Law R(n(i, j)) = cos θ(i, j) = n(i, j) · s;

• scene objects behave as perfect reflectors and do not absorb any radiation for any wavelength, or, if
they do, the fraction of reflected radiation against incoming radiation, the reflectance, ρb, is known
for every image point, and can be discounted from the intensity, D̃(i, j) = D(i, j)/ρb(i, j), before
solving the brightness equation; and

• the sensor is linear and produces images which can be approximated by orthographic projection.

Some of these constraints are included in the reduced model of image formation introduced in
section 7.1. The remaining ones (i.e. one object in the image with known reflectance and one point
light source with known parameters) will be accounted for in the next point.

7.2.4 Algorithmic description of IS2R

Classical SFS techniques assume changes in intensity are only due to variations in the angle θ =
cos−1 (n(i, j) · s) between the surface normal and the light source direction. Therefore, when a material
boundary is crossed, the change in intensity due to the reflectance variation is considered as an abrupt
change in the angle θ, and, therefore, a variation in the surface normal n. As a result, the heights of the
corresponding points appear higher or lower than they actually are. If, in addition to the reflectance
changes, the image is affected by ambient lighting, the intensity values are then displaced to higher
values depending on the material reflectance (equation 7.15), which also affects the subsequent height
computations.

However, if the SFS algorithm is guided so that material boundaries are not crossed and ambient
illumination contribution is estimated for every material and discounted from the intensity values, the
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Pseudocode 7.1 Iterative growth of a region R of uniform reflectance in IS2R. (Estimates L̂a, L̂d

and ŝ are assumed available.)

(0.1) select a small set of image pixels as R0

(0.2) estimate ρ̂b from R0

repeat for k = 1,2,...

(k.1) estimate shape of Rk−1 through SFS discounting first (L̂aρ̂b) and (L̂dρ̂b) from pixels
in Rk−1

(k.2) determine the set C
(
Rk−1

)
, consisting of all the pixels adjacent to the border of Rk−1

(k.3) W
(
Rk−1

)
← ∅

(k.4) for every pixel (i, j) ∈ C
(
Rk−1

)
, hypothesize its reflectance is ρ̂b and verify whether

it is consistent with the image:

(k.4.1) extrapolate the shape found for Rk−1 to a neighbourhood N (i, j) of
pixel (i, j), including pixel (i, j)

(k.4.2) obtain an estimate θ̂(u, v) for pixels (u, v) ∈ N (i, j), using the shape
extrapolation of (k.4.1)

(k.4.3) determine whether (L̂aρ̂b), (L̂dρ̂b) and θ̂(u, v) are consistent with
D(u, v) values throughout neighbourhood N (i, j);

if they are consistent, add pixel (i, j) to the set W
(
Rk−1

)

endfor

(k.5) Rk ← Rk−1 ⋃W
(
Rk−1

)

until W
(
Rk−1

)
= ∅

resultant heights will not be affected by the aforementioned unwanted behaviour. Nevertheless, to avoid
crossing material boundaries, the image must be first segmented in regions of uniform reflectance so as
to apply SFS to every region separately. Therefore, a circular dependence is found: a segmentation is
needed to properly apply the SFS algorithm, but shape (i.e. the output of SFS) is needed to determine
the material reflectance according to equation 7.16. This situation suggests a recurrent procedure where
regions are iteratively grown through pixels whose reflectance has been determined to be the same as
the common reflectance of pixels already belonging to the region currently being grown, until no more
growth can take place.

Pseudocode 7.1 makes use of all the aforementioned to iteratively grow a region R through a series
of steps R0 ⊆ R1 ⊆ · · · ⊆ RN . The process is stopped as soon as region R does not grow in step k
(in the pseudocode, this fact corresponds to an empty resultant W

(
Rk−1

)
after sub-step (k.4)). Next,

another region is grown, and pseudocode 7.1 applies again, and so on until no more regions can be
created.

The main details of the procedure for growing a region are given below:

• First, step 0 starts the growing process by selecting a group of seed pixels [sub-step (0.1)] from
where to derive an estimate ρ̂b of ρb [sub-step (0.2)]

• Next, step k grows region R from Rk−1 to Rk. To this end:
a) The shape of Rk−1, which is ensured to group only pixels coming from the same material,

is computed through SFS, discounting first (L̂aρ̂b) and (L̂dρ̂b) to every pixel, so that only

cos θ̂(i, j) is passed to the SFS algorithm [sub-step (k.1)]:

cos θ̂(i, j) =
D(i, j) − (L̂aρ̂b)

(L̂dρ̂b)
. (7.17)

b) Pixels which are adjacent to the border of region Rk−1 are then considered as candidates to
join region R and are grouped into set C(Rk−1) [sub-step (k.2), see figure 7.1].

c) Next, every pixel (i, j) ∈ C(Rk−1) is considered for joining region R: first, pixel (i, j) is hy-
pothesized to have been generated by reflection over a material with reflectance ρ̂b —the same
as pixels already belonging to region R—, and then the hypothesis is checked.
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Fig. 7.1. Step (k.2) of IS2R region growing procedure: pixels in light gray correspond to Rk−1, while pixels
in dark gray are candidates to join region R and therefore belong to the set C(Rk−1). (In the example, 8-
connectivity is used, though it is not essential.)

To check the hypothesis:
i. shape information produced for region R is extrapolated to a neighbourhood N (i, j) around

pixel (i, j), by means of surface fitting, so that an analytical surface is obtained [sub-step
(k.4.1), see figure 7.2];

ii. with this analytical surface and knowledge about the point light source direction ŝ, an
estimate θ̂(u, v) of θ(u, v) is obtained for every pixel (u, v) ∈ N (i, j) [sub-step (k.4.2), see
figure 7.2];

iii. finally, it is evaluated whether D(u, v) could have been generated from θ̂(u, v), (L̂aρ̂b) and

(L̂dρ̂b) for every (u, v) ∈ N (i, j); that is to say, expression 7.18 is computed for every (u, v):

D(u, v) −
[(

L̂aρ̂b

)
+ cos θ̂(u, v)

(
L̂dρ̂b

)]
, (7.18)

and from the whole set of differences a decision is made about whether the image values are
consistent with the hypothesis; in such a case, pixel (i, j) can join region R and is added
to the set W(Rk−1) [sub-step (k.4.3)].

d) Finally, every pixel (i, j) ∈ C(Rk−1) to which reflectance ρ̂b can be assigned consistently with
the image (i.e. (i, j) ∈ W(Rk−1) ⊆ C(Rk−1)) is aggregated to region R, giving rise to Rk

[sub-step (k.5)].

It is worth noting the fact that no assumption has been made about the SFS algorithm to use, so
that, theoretically, anyone proposed in the related literature can be used. In the particular implemen-
tation of this method, one of them has been selected taking into account performance and efficiency
reasons, but no limitation is imposed a priori by the method (the SFS technique used is described in
section 7.4). Likewise, the segmentation method is also independent of the surface fitting technique
applied, although some techniques yield better results than others (the particular fitting technique
used is described in section 7.5). Remaining details related with the different sub-steps of the recurrent
procedure can be found in the following sections.

Finally, contrary to what one can initially think about the method proposed, it cannot be considered
as a range segmentation algorithm2. In effect, in range segmentation, shape information is available
for all the image points right from the beginning, while, in the proposed method, shape is available for
a given image pixel only if it has been ensured it belongs to the region which is currently being grown.

2 See [99,112].
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Fig. 7.2. Sub-steps (k.4.1) and (k.4.2) of IS2R region growing procedure. After having applied SFS to region
Rk−1 (figure 7.1, pixels in light gray), pixel (3,6), labelled with a square 2, is considered to be added to region
R. In the example, its neighbourhood (set N (3, 6)) includes itself and pixels labelled with a circle (©). Points
labelled with a triangle (∇) have been extrapolated using the analytical surface resulting from fitting the shape
information obtained from the shading. The thicker lines represent surface normal vectors from where angle θ
would be estimated

7.3 Initialization of Regions

In order for a region R to grow through pseudocode 7.1, it is necessary to have a set of pixels, say R0,
acting as a sort of seed from which to obtain shape information which allows the growing process to
start. Since an SFS algorithm is going to provide such shape information and this sort of algorithms
essentially solve the brightness equation, pseudocode 7.1 assumes estimates for La, Ld and s are
available, as well as for ρb, which would be deduced from R0. Furthermore, observe that ρb, La and
Ld are not really needed separately for applying pseudocode 7.1 nor for the SFS algorithm. What is
truly necessary are the two composite reflectances Da = (Laρb) and Db = (Ldρb). This fact simplifies
enormously the problem, since multiple values of ρb, La and Ld give rise to the same Da and Db values.

Remember now from chapter 5 that equation 7.16 predicts that the pairs (D,mb = n · s) lie on
a straight line whose parameters are Da and Db. If enough pairs (D,mb) were available for every
seed R0 of every image region R, then a least-squares-based procedure could provide the composite
reflectances. Unfortunately, this is not typically the case and an alternative method must be looked for.
Although several methods of composite reflectance estimation using just the information contained in
a single image can be found in the physics-based vision literature [140,141,226,311]3, however:

(1) none of these methods was initially devised to incorporate ambient lighting, and,

3 So far, several techniques have been published with regard to the estimation of image reflectance values from
a single image. The final goal of such techniques was mostly to use the estimates in shape from shading
calculations. As it will be seen, none of them take into account ambient lighting, so that their image formation
model is reduced to equation 7.19:

D(i, j) = (n(i, j) · s) (Ldρb(i, j)) . (7.19)
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(2) because of their respective formulations, only the method by Pentland [226] could be adapted to
tolerate ambient lighting since, due to being mostly based on first and second image derivatives,
the ambient lighting term vanishes during the derivation of the main results.

Besides, even for Pentland’s method, the estimates of composite reflectances obtained were not accurate
enough so as to be used within IS2R. A method based on the composite reflectances of a calibration
object was devised instead and is presented in the following.

Let us assume now that any of the lighting parameters estimation methods of chapter 5 has been
applied using a calibration object whose body reflectance is ρb,C , so that estimates of the respective

composites reflectances D̂a,C = (L̂aρ̂b,C) and D̂b,C = (L̂dρ̂b,C) are available4.
Let us also assume that for region R a singular point , i.e. a point such that the surface normal

coincides with the light source direction and, consequently, mb = 1, has been located. For the corre-
sponding pixel, Dsp = (Laρb) + mb(Ldρb) = (Laρb) + (Ldρb), which, according to the discussion of
section 7.1, is Dsp ≈ (La + Ld)ρb and:

Dsp

(Laρb,C) + (Ldρb,C)
=

Dsp

(La + Ld)ρb,C
=

(La + Ld)ρb

(La + Ld)ρb,C
=

ρb

ρC
= ρ̃b , (7.20)

where ρ̃b would be a sort of reflectance for R relative to ρb,C .

Now, D̂a,C and D̂b,C can be used as it is indicated below:

D̂a,C ρ̃b = Laρb,C
ρb

ρb,C
= Laρb (7.21)

D̂b,C ρ̃b = Ldρb,C
ρb

ρb,C
= Ldρb (7.22)

which are, precisely, the values to discount to image intensities for region R before applying the
SFS algorithm. Therefore, it is at singular points where (Laρb) and (Ldρb) can be estimated without
previous knowledge about the shape of the scene, and, consequently, it is around singular points where
seeds R0 must be created5.

Regarding the composition of R0, it has been chosen to consist of either pixels not differing more
than a fixed number of intensity levels with the singular point intensity value, and being within a

On the one hand, two statistical approaches for estimating the composite reflectance term (Ldρb) were
reported by Lee and Rosenfeld [141] and Zheng and Chellappa [311]. Both methods were based on the
distribution of surface normal vectors all over the image. The main difference between them precisely lie in
their assumptions about this distribution. While the former assumed locally spherical surface patches, the
latter considered them as locally flat. Using these premises both derived the needed distribution function.
The two methods, however, tried to estimate a constant reflectance value for all the pixels in the image,
independently of the number of existing materials.

A different method was proposed by Lee and Rosenfeld [140]. They computed the composite reflectance
value for each pixel P using only the intensity information of P and two pixels on opposite sides of P ,
provided they did not come from coplanar points in the scene. The estimated values were then collected in
a histogram for the whole image. The peaks of such histogram corresponded then to the different materials
in the scene.

Pentland also proved that, for umbilical surface points (i.e. points with equal principal surface curvatures),
first and second image derivatives allowed estimating the composite reflectance for those points and provided
the corresponding formulation [226].

4 Remember that the lighting estimation methods proposed in chapter 5 provide estimations of the composite
reflectances D̂a,C = (L̂aρ̂b,C) and D̂b,C = (L̂dρ̂b,C), which, if the calibration object has been adequately

chosen (i.e. ρb,C = 1), allow obtaining the estimates L̂a = D̂a,C and L̂d = D̂b,C of, respectively, La and Ld.
5 As a further result, observe that, from a theoretical point of view, ρ̃b is invariant against illumination changes,

so that it could be used for object recognition purposes. In effect, if light strengths change from session (1)

to session (2), whatever L
(2)
a and L

(2)
d are, then:

ρ̃b
(2) =

D
(2)
sp

(L
(2)
a ρb,C) + (L

(2)
d ρb,C)

=
L

(2)
a ρb + L

(2)
d ρb

L
(2)
a ρb,C + L

(2)
d ρb,C

=
ρb

ρb,C

= ρ̃b
(1) . (7.23)
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square area centered around the singular point. Parameters ∆R0 and RR0 determine, respectively, the
difference in intensity with the singular point and the side of the square area.

To grow regions around singular points, the latter must be located first. As θ = 0 for those points,
they correspond to pixels of local maximum brightness. Therefore, looking for pixels in the image
which have the largest intensity in a neighbourhood seems to be enough6. This is a low-cost strategy
for locating singular points, which has shown to work well along the different experiments performed7.
Note the previous process can be applied to every pixel in the image a priori, producing a singular

points map which can be consulted when looking for singular points. In the algorithm, the size of the
2D neighbourhood is parameterized through the length of the side of a square area whose center is the
current image point (parameter Rsp).

The fact that regions grow around singular points implies that, at the beginning, the growth of
regions is only along decreasing intensity paths. However, after some iterations, it is possible that
increasing intensity paths have to be explored (i.e. think of the case of a multiple singular point
object consisting of one material). Although, theoretically, pseudocode 7.1 is insensitive to the sort of
intensity path followed, experimental results have shown that both the shape extrapolation and the
consistency test behave more reliably if only intensity decreasing paths are used. As a consequence,
however, objects with multiple singular points are over-segmented. How to deal with it, together with
other segmentation anomalies, will be discussed in section 7.7.

To finish, regions are grown from the darkest to the brightest one (i.e. from the region with the
darkest singular point to the region with the brightest singular point). In this way, lower-reflectance
regions are grown first and, accordingly, the corresponding object pixels are labelled first, so that
adjacent higher-reflectance regions will not even consider them for growing the current region through
decreasing intensity paths.

7.4 Region Shape Estimation

Recovering the correct shape of an object from the shading of the corresponding image has proven to
be a difficult mathematical problem, even under the standard idealizing assumptions of Lambertian
reflectance, one light source and orthographic projection. Under these conditions, the brightness at a
given point fixes only the projection of the surface normal onto the incident light vector and, hence, a
unique normal vector cannot be easily associated to each point by means of just the brightness value.
Therefore, some constraints must be imposed to cut down the huge number of solutions consistent
with the image and to strongly couple normal vectors across the surface.

Since the formulation of the shape from shading problem by Horn, several approaches and con-
straining strategies have been proposed in order to ensure the accuracy of the estimated surface [303]:
while local approaches impose restrictions on the local shape of surfaces, which give rise to closed-form
solutions (for instance, [141, 224] assume surfaces are locally spherical), global minimization methods
formulate the problem as a minimization of a functional regarding the relation between the shape and
the image, and propagation methods develop the object surface propagating shape information from
points with known height or surface orientation8.

Global minimization and propagation approaches often solve the problem in an iterative way, so
that the convergence of the algorithm and the convergence to the correct solution are issues of prime
importance. As the former issue depends on the algorithm itself and on the particular brightness pattern
(i.e. is there a surface giving rise to the image?), the latter mostly depends on the initial values given to
the algorithm. In order to enforce proper convergence, researchers imposed regularization constraints to
guarantee physically plausible surfaces (mostly smoothing and integrability), while shape information

6 For instance, in [193], where it is also needed to locate singular points, the image is assumed to be generated
according to the brightness equation and, thus, locating singular points is just a matter of thresholding the
image by a value close to 1.

7 Another property of singular points is that the image surface at the corresponding pixel has a normal vector
equal to (0, 0,−1), because it is a local extreme.

8 Zhang et al. [303] distinguish a further class, which they call linear approaches, as they linearize the re-
flectance map.
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at occluding boundaries was used as initial values (many of the related papers are collected in [103]).
Later, Oliensis [190, 191] proved that the complete shape information at an occluding boundary does
not well-determine the surface reconstruction, but height at singular points corresponding to local
mimima or maxima of height (Local Minimum/Maximum Singular Point or LMSP, according to the
terminology of Oliensis and Dupuis [193]) does without the need of any regularization9; Oliensis and
Dupuis then proposed a propagation strategy based on the singular points constraint and optimal
control theory [192]. Afterwards, on the basis of Oliensis’ idea, Bichsel and Pentland presented a
simpler propagation approach based on a minimum downhill principle [17], while Rouy and Tourin [242]
proposed a solution based on viscosity solutions to partial differential equations.

Oliensis not only proved that an LMSP uniquely determines the surface, but he also showed that
this happens just within some image neighbourhood. As a consequence, if height is provided for every
LMSP of the surface (e.g. from stereo), a correct global reconstruction can be achieved10. Otherwise,
assigning a height to only one singular point of the surface, let us say 0, provides a correct reconstruction
but just in the above mentioned neighbourhood, called the domain of attraction of the singular point
by Oliensis and Dupuis. In those cases of lack of information about singular point heights, a global
algorithm is needed (see [23, 117, 193]), in contrast with the previous algorithms, which would be
considered local since only locally is the surface correctly reconstructed. Those algorithms use at their
heart a local algorithm and then patch the local solutions together by first determining the relative
height of LMSP whose domains of attraction touch.

Therefore, at first sight, it seems that either height information should be provided at LMSP or a
global shape from shading algorithm should be applied in sub-step (k.1) of the recurrent procedure of
pseudocode 7.1. However, to obtain the segmentation of the image using the above procedure, it is just
necessary that the brightness equation is fulfilled by the surface recovered, irrespectively of its resem-
blance to the original surface. In effect, changes in reflectance are detected by means of the consistency
test, which, in turn, checks whether assigning the reflectance of the currently growing region to the
considered pixel is coherent with the image on the basis of the angle θ estimated through extrapolation
of the recovered surface. Therefore, if the recovered surface satisfies the brightness equation and the
extrapolation is correct, just the reflectance determines the result of the consistency test. Further-
more, take into account that, since regions growth is restricted to decreasing intensity paths around
singular points, the resultant regions will mostly agree with the domains of attraction of Oliensis and
Dupuis [193], where shape is correctly reconstructed. (Note the reconstruction would not be correct
for saddle singular points, but the brightness equation would indeed be satisfied.)

Among the different SFS algorithms cited above, Bichsel and Pentland proposal [17] (B&P algo-
rithm from now on) has shown to satisfy the brightness equation and has proven to be a low-cost
way of estimating shape, which is crucial in this application due to the huge number of times the SFS
procedure is called (experiments performed have shown that between 5 and 10 iterations are sufficient
in most cases)11. Essentially, the B&P algorithm uses a variant of the method of characteristic strips
to obtain height maps of the scene. The known unstability of the original method by Horn [100] is
overcome by an iterative scheme where the local surface height is updated according to a minimum
downhill principle.

In the B&P algorithm, the heights of local maxima singular points have to be given as an ini-
tial height map in order to obtain a correct reconstruction. If those heights are truly available, the
segmentation algorithm can be provided with them. Otherwise, an initial height 0 can be used for
every singular point. Due to the way the B&P algorithm derives the surface, using such a height for
a local maximum gives rise to a locally correct surface, while for a local minimum, a convex solution

9 Maximum brightness is attained at singular points. Therefore, singular points correspond to local minima of
height, local maxima of height or saddle points with respect to the light source direction. However, only LMSP
determine the surface reconstruction, although up to a concave-convex ambiguity (see, for instance, [226]).

10 In fact, height information for every non-saddle singular point is not needed, since some algorithms propagate
shape information from local maximum singular points [17], while others do it from local minimum singular
points [118]. Some algorithms even propose two versions, one for each case [192].

11 Another low-cost solution for estimating shape from shading which could have been adopted is the algorithm
by Kimmel and Sethian [118].
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is obtained instead of the expected concave surface. As for saddle points, the recovered surface also
tends to be concave-shaped. In all cases, however, the brightness equation is satisfied.

As for the particular implementation of the B&P algorithm within the segmentation strategy, it
has been observed that, if this algorithm is restricted to work with a light source at infinity and over
the optical axis (i.e. the light source orientation vector is (0, 0,−1)T according to the axis notation
depicted in figure 4.1), several benefits can be obtained: first, the computations for estimating shape
are considerably simplified; secondly, Bichsel and Pentland suggest in the paper an image rotation
according to the tilt of s before applying the algorithm in order to improve results, which now is no
longer needed; finally, a better behaviour of the B&P algorithm has been observed as for convergence
under side lighting.

As a consequence of using a vertical light source, at the end of the reconstruction, the surface
normal vectors of the estimated shape appear rotated according to the coordinate transformation from
vector (0, 0,−1)T to the true light source direction. If R is the rotation matrix which transforms the
light source direction from s to (0, 0,−1)T , the brightness equation can also be put as indicated in
equation 7.24, since RT R is the identity matrix because R is a unit matrix:

E = (n · s) =
(
nT s

)
=

(
nT RT R s

)
=

[
(R n)

T
(R s)

]
=


(R n)

T




0
0

−1





 (7.24)

Thereby, since the recovered surface satisfies the brightness equation for s′ = (0, 0,−1)T , then the
surface normal vectors of the recovered surface are n′ = R n. As the surface normal is used in the
surface reconstruction to determine the final height values z, the recovered surface points (x, y, z)
are rotated accordingly [118]12. Note that the rotation back is not needed within the segmentation
algorithm since the shape extrapolation and the consistency test can both be equally done in the light
coordinate frame.

7.5 Shape Extrapolation

The shape extrapolation sub-step is carried out through an analytical surface which is fitted to sets
of image points whose heights are available. In this way, θ can be estimated for every image pixel
involved in the consistency test. Clearly, the sort of surface model used in the fitting determines the
quality of the extrapolation. At first, it seems the surface model would depend on the sort of local
surface shapes which are expected in the scene. However, due to the peculiar way the shape estimation
is carried out, recovered surfaces, although satisfying the brightness equation, need not be similar to
local shapes in the scene. To achieve such a performance, heights at singular points must be given,
and only LMSP should be used for growing regions (i.e. saddle singular points should be avoided).
Therefore, in principle, it is not clear the relationship between the shapes in the scene and the surface
model.

Another criterion for choosing the surface model is the time involved in the fitting. At this point,
it is worth noting the fitting procedure can be executed thousands of times for a typical 200×200
image (at a minimum, almost once per pixel). Therefore, a surface model for which a low-cost fitting
algorithm exists would be an interesting option.

Taking into account the locality of the fitting and the computational cost limitation, the family
of quadric surfaces has been considered a compromise solution to adopt at this point. On the one

12 Matrix R relating points in the world coordinates frame and the light coordinate frame is given by:
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where σ = cos−1 sz and τ = tan−1 sy

sx
are, respectively, the slant and tilt angles of the light source direction

s = (sx, sy, sz). In the above expression, primes denote the light coordinate frame.
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hand, patches of quadric curves and surfaces have found widespread use in modeling and recognition
of objects of interest in computer vision. On the other hand, the fitting technique by Taubin [271]
provides an approximation to the orthogonal distance for implicit surfaces at the cost of solving an
eigenvalue problem of the same dimension as the number of parameters of the surface. Surely, more
complex analytical surfaces (e.g. bivariate polynomials of higher order, superquadrics, surface splines,
etc...) could yield better results, but at the expense of a higher computational cost. Finally, the fact
that only decreasing intensity paths are allowed when growing a region avoids strange surfaces (i.e. as
only one singular point is included in the region, no more than one local minimum, local maximum or
saddle point can be found in the recovered surface), making thus quadric surfaces more suitable for
extrapolation purposes.

The shape extrapolation sub-step is executed in different ways throughout the analysis of the
image. Once the singular points map has been obtained, regions around singular points start being
grown using all the image points belonging to the region and their respective heights; a global fitting
strategy is thus used. When Rk can no longer be fitted by a quadric because the fitting error is too
high, then its growth is stopped, and the next singular point is considered. Once all singular points
have been processed, region-growing is resumed for every region, but now using a local fitting strategy:
for a given region Rk, a sub-region of Rk around the pixel considered to be added to Rk, and the set
of respective heights, are used in the fitting. The whole shape extrapolation strategy intends, thus, to
improve shape extrapolation at the beginning, when regions are incipient. The length of the side of
the square area used in the local fitting stage is another parameter of the method (Rlf ).

In order to detect when the surface model is not compatible with the object surface, two tests must
be passed by the quadric resulting from a fitting:

(1) On the one hand, it is required, for the fitted points, the fulfillment of the following relationship
between the maximum square Taubin distance τM (S)2 and the mean square Taubin distance τ̄(S)2:

τM (S)2 ≤ ǫf τ̄(S)2 (7.26)

where ǫf > 1 is a parameter, S = 0 is the implicit surface resulting from the fitting and

τ(S, xi) =
S(xi)

∇S(xi)
(7.27)

τ̄(S)2 =
1

n

n∑

i=1

τ(S, xi)
2 (7.28)

τM (S)2 = max
1≤i≤n

τ(S, xi)
2 (7.29)

where S(xi) is the algebraic distance of point xi to the surface S (i.e. the deviation of S(xi)
from 0). This is the adaptation of the second test used in Taubin’s planar curves segmentation
algorithm [271].

(2) On the other hand, as a quadric generally shows two leafs, a set of points is considered well
approximated by the surface if a single leaf fits all of them.

To finish this section, the validity of the shape extrapolation is discussed next. If the surface is
smooth at the point where the extrapolation is performed and the surface approximates well the
points already belonging to the region, the extrapolation error typically depends on the distance (over
the image plane) between the extrapolated points and the points from which the extrapolation has
been computed; generally speaking, the nearer the extrapolated points are (over the image plane),
the lower the error. Therefore, if the consistency test is applied in a small neighbourhood of the pixel
considered to join the currently grown region, the extrapolation error is expected to be low.

7.6 Consistency Test

The consistency test verifies whether the hypothesis made in sub-step (k.4) is coherent with the image.
That is to say, whether using the extrapolated shape and the reflectance of the region currently being
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Fig. 7.3. 1D neighbourhoods used in the consistency test. Pixels within the region (light gray pixels) are used
to compute D̄ for every direction (equation 7.31). Pixels outside the region (white pixels) and pixel (i, j) are
all submitted to the consistency test (equation 7.31).

grown, and, thus, the corresponding composite reflectances (Laρb) and (Ldρb), the intensity values
predicted by the equation defining the image formation model (equation 7.15) are similar to the ones
found in the image. That is to say, for pixel (i, j), the consistency test would be formulated as:

|D(i, j) − [(Laρb) + cos θ(i, j)(Ldρb)] | ≈ 0 (7.30)

where θ(i, j) would be determined from the shape extrapolation at pixel (i, j).
The performance of the consistency test proposed in equation 7.30 is directly related with, in

particular, the quality of the estimate of θ(i, j). Admittedly, several sources of noise can condition
the reliability of the consistency test formulated in equation 7.30. For a start, the imperfections of
the sensor itself first and the subsequent discretization next give rise to deviations between the true
irradiance at the sensor cell and the intensity value found in the image array. Next, the SFS step,
when reconstructing a surface compatible with those intensity values, can be affected not only by the
noise of the image but also by the proficiency of the SFS algorithm in producing a surface fulfilling
the brightness equation. Furthermore, θ(i, j) is computed from a fitting stage at which a surface model
has been imposed and where, again, the performance of the algorithm chosen for this step also affects
the final value for θ(i, j). Finally, the camera aliasing makes intensity edges corresponding to scene
reflectance transitions appear rounded in the image, what can significantly reduce the gap expected
between predicted and actual intensity values at those locations.

Because of all this, the consistency test is modified as it is indicated in the following in order to
improve its performance:

(1) On the one hand, in order to counteract the effects of camera aliasing, several pixels in the nearness
of pixel (i, j) are tested instead of just pixel (i, j), so that pixel (i, j) is rejected if any of them does
not pass the test. In order to improve the localization of region borders, several 1D neighbourhoods
of pixel (i, j) are used, taking as orientations for the 1D neighbourhoods the region outward direc-
tions at pixel (i, j) (see figure 7.3). The test must be satisfied in at least one of those directions.
The number of pixels ahead of pixel (i, j) which are used, nA, is a parameter.

(2) On the other hand, instead of comparing the difference between actual and predicted intensity
values with just 0, a certain deviation between predicted and actual intensity values is accepted. In
the new form of the consistency test, the deviation tolerated is expressed by means of a first-order
model incorporating either the goodness of the estimation of θ and the uncertainty of the intensity
values involved, as it is expressed in equation 7.31:

|D(i′, j′) − [(Laρb) + cos θ(i′, j′)(Ldρb)] | ≤ ǫ1∆ + ǫ2δ(D(i′, j′)) + ǫ3 . (7.31)

In equation 7.31, i′ and j′ are the image co-ordinates along the outward part of the 1D neigh-
bourhood considered, ∆ is the deviation average measured along the inward part of the same 1D
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neighbourhood, δ(D(i′, j′)) is the uncertainty of the intensity value D(i′, j′), and ǫ1, ǫ2 and ǫ3 are
weights for balancing the importance given to the different sources of information regarding the
deviations between predicted and actual intensity values. The number of pixels used to compute
∆, nD (see figure 7.3), is also a parameter.

7.7 Discussion on Segmentation Anomalies

Due to the way how IS2R works, some anomalies can appear in the resultant segmentation:

(1) As has been discussed before, the surface model imposed by the surface fitting stage can lead to
higher fitting errors if the real surface is not locally compatible with the analytical surface. In this
case, the extrapolation is not performed and the point is not considered for joining the region,
so that the growth of the region towards a certain direction can stop without being at an object
boundary. As a consequence, a region in the image corresponding to the same material can be split
up into several regions.
On the other hand, due to the fact that only non-ascending intensity paths are used for growing
regions, objects with several singular points are also divided into as many regions as singular points
possess the object.
Both situations can lead to an over-segmentation of the image caused by one or more sets of
adjacent regions of similar reflectance. A further stage of region merging should thus be considered
for adoption in those cases.

(2) A segmentation can be incomplete when either the scene contains objects that do not show singular
points (e.g. due to occlusions), or if, for a certain object, some pixels are labelled because they
are in an intensity descending path from a singular point, while others are not because there is no
singular point leading to them through an intensity decreasing path.
In case this happens, the segmentation can be completed by following a similar way of action as
the one suggested in the consistency test section: (1) those non-labelled pixels adjacent to labelled
pixels are considered candidates to grow new regions; (2) among them, the non-labelled lowest
intensity one is used to grow a region using decreasing intensity paths; (3) as no reflectance can
be estimated for the region, since no singular point can be found, no predictions are made and the
region just grows towards lower or identical intensity pixels until no more growth can take place;
(4) the process is repeated for the following non-labelled higher intensity pixel until all the pixels
have been labelled.
Note that the previously outlined strategy does not guarantee that the new regions satisfy the
reflectance uniformity assumption of SFS algorithms. Figure 7.4 presents a 1D case in which this
requirement would likely be violated. Regions X and Y are regions grown around singular points
so that they follow the normal procedure. However, at points A and B the consistency test stops
the growth and, therefore, the pixels between A and B leave unlabelled. In the posterior stage,
A would be selected first to grow a new region, but the growth would not stop until point E was
reached. The same would apply from point B. At points C and D, no prediction could be done,
since no reflectance was known for the newly created regions, so that the growth could not be
stopped, and regions V and W finally would result.
Some of the new regions can be added to the previous ones (i.e. the regions for which the reflectance
is known) using continuity criteria along the borders of adjacent regions. In effect, if the image
surface at the border between two regions is continuous then no change in reflectance can take
place and therefore the newly created region can inherit the reflectance of the former region.
As a result of the previous process, several regions would be merged and a new partition would re-
sult. In the end, those regions for which the reflectance was known would be suitable for estimating
shape from image shading.
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Fig. 7.4. 1D example of a segmentation where a region can violate the reflectance-uniformity requirement.

7.8 Extension of the Model of Image Formation

This section discusses how IS2R can be enhanced so as to be able to segment images coming from
scenes not satisfying all the assumptions made in the simple image formation model of section 7.1. The
different extensions considered are discussed in the following sections.

7.8.1 Segmentation of colour images

In order for IS2R to be able to segment colour images, some of the steps of pseudocode 7.1 must be
generalized to work with several colour planes instead of an only gray-level plane. The corresponding
modifications are described as follows:

1. Now, estimates (L̂aρ̂b,C)k and (L̂dρ̂b,C)k, k ∈ {R,G,B}, are required, what can be obtained from
the lighting estimation algorithms of chapter 5. Accordingly, (Laρb)

k and (Ldρb)
k must be deter-

mined from singular points, using equations 7.21 and 7.22, and removed from the respective pixels
before estimating shape.

2. As for the localization of singular points, colour pixel values are transformed to gray-level in order
to have an only image surface from where to determine local maxima of brightness. The conversion
follows the NTSC video standard, which determines how a colour television signal is rendered on
a black and white television:

D = 0.2989DR + 0.5870DG + 0.1140DB , (7.32)

where D represents the gray-level value.
3. The order in which regions are grown agrees with the modulus of the colour of the corresponding

singular point Dsp = (DR
sp,D

G
sp,D

B
sp): the lower ‖Dsp‖ is, the sooner the singular point is visited.

4. In general, SFS algorithms, and in particular the B&P algorithm, require an only array of values
corresponding to the brightness equation, which now will have to be generated from the three
colour planes usually available from colour cameras. Since the body geometrical term mb affects
all the colour channels in the same way, any of the colour planes could be used from a theoretical
point of view. However, since images contain discrete values of intensity, the colour plane for which
the reflectance is the largest turns out to be the best election. In effect, consider a region which,
for the red channel, (Ldρb)

R = 255 and, for the green channel, (Ldρb)
G = 10, and (Laρb)

R = 0
and (Laρb)

G = 0 for simplicity. Then, the array of values used by the SFS algorithm for the red
colour channel will be constituted by elements of the set:

DR − (Laρb)
R

(Ldρb)R
= {0/255, 1/255, 2/255, 3/255, . . . , 255/255} , (7.33)

while in the case of the green colour channel this set will consist of just:

DG − (Laρb)
G

(Ldρb)G
= {0/5, 1/5, 2/5, 3/5, 4/5, 5/5} . (7.34)

Clearly, in the first case, the accuracy of the shape reconstruction must necessarily be better.
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Fig. 7.5. Illustration of the concept of intensity descending path in colour images.

5. The consistency test must now take into account that three intensity levels per pixel are available.
Therefore, to incorporate a new pixel to the currently grown region, the difference between pre-
dicted and actual intensity values for all three colour channels must be required to be in accordance
with the discrepancy model of equation 7.31.

6. Finally, the concept of descending intensity path introduced for gray-level images must be adapted
to colour images. In a noiseless colour image and within a uniformly coloured object, pixel values
found along paths departing from a singular point lie in colour space in the straight line defined by
vector Cb = ((Ldρb)

R, (Ldρb)
G, (Ldρb)

B)T and point Ca = ((Laρb)
R, (Laρb)

G, (Laρb)
B)T . There-

fore, in this context, a pixel P with values (DR,DG,DB)T can be said “to be below” a pixel P ′

with values (DR′,DG′,DB′)T along an intensity descending path, if the projection of the former
onto the straight line defined by vector Cb and point Ca is lower than the projection of the latter
(see figure 7.5). In other words:

(P − Ca)T Cb

‖Cb‖
< (P ′ − Ca)T Cb

‖Cb‖
(7.35)

Besides, pixel P is required to be close to the mentioned straight line, or, in other words, the
orthogonal distance in colour space from pixel P to the straight line defined by vector Cb and
point Ca is bounded.

7.8.2 Tolerance to shadows

IS2R attempts to grow regions around all the singular points which have been detected in the image.
Therefore, if a singular point is found inside a shadow, a region, let us say R, will be created from the
intensity descending paths departing from it. Accordingly, IS2R will assign composite reflectances Ca

and Cb to region R using equations 7.21 and 7.22. Remember that, as was already commented at the
end of section 2.3.4, pixels from shadows have mb = 0 and, therefore, lie exactly at Ca

′, the composite
reflectance of the main region, let us say R′. Therefore, IS2R erroneously splits Dsp = (DR

sp,D
G
sp,D

B
sp)

between Ca and Cb through equations 7.21 and 7.22, since, a priori, it does not have knowledge about
whether R is a shadow or not. However, Dsp = Ca + Cb = Ca

′, so that, if adjacent regions R and R′

are discovered to have Ca + Cb = Ca
′, then R can be inferred to be a shadow of R′ and, therefore,

merged.
Clearly, this is a simplified model for shadows which considers them as areas of low constant

brightness. This is particularly true when illumination is assumed to come from a point, but not for
general lighting distributions, which usually give rise to areas of penumbra next to full shadows [83, p.
92].

7.8.3 About other extensions

The incorporation of further extensions to the image formation model greatly depends on the capabil-
ities of the part of the segmentation algorithm devoted to computing shape information, which in the
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case of IS2R refers to the SFS method embedded in the algorithm. Although most SFS methods require
the satisfaction of all the model constraints enumerated in section 7.1, some authors have proposed
newer algorithms able to cope with more general models of image formation. These are the cases of,
among others, Lee and Kuo [146] or Samaras and Metaxas [247], who mainly allow non-Lambertian
surfaces in the scenes so that, from a theoretical point of view, specularities are tolerated by the pro-
posed SFS methods. Unfortunately, according to the results published in the respective papers, the
accuracy of the shape recovered is clearly not adequate so as to be used within IS2R, not even for
simple shapes. In fact, along the experiments, Lee and Kuo have to resort to photometric stereo to
improve the quality of the shape recovered and, even under the enhanced operating conditions, the
improvement achieved is acceptable only in some cases and for very simple shapes. Some other au-
thors have proposed the removal of specularities from images before proceeding to estimating shape
information, what could be an alternative for IS2R (see [45,179,223,249,250,268] among others).

There are however other enhancements of the image formation model which IS2R could easily
incorporate. This is, for instance, the case of the improvements in the lighting distribution model pro-
posed by Tian et al. [277–279]. More precisely, they determine reflectance maps for scenes illuminated
by multiple rectangular light sources and for scenes involving spherical and cylindrical light sources.
Besides, they use the B&P SFS algorithm to test the new reflectance maps.

7.9 Experimental Results

Results for IS2R corresponding to several segmentation and surface reconstruction experiments with
synthetic and real images under different lighting conditions and different reflectance combinations
are provided in this section. Although many of the experiments have been designed so as to satisfy
scrupulously the reduced image formation model expressed through equation 7.15, some others will
involve images incorporating the extensions to the image formation model of section 7.8. As will be
seen, among the different parameters of IS2R, some of them remained fixed throughout almost all the
experiments while others needed slight variations. In general, the former were set to values that seemed
reasonable, while the values for the latter are the ones giving rise to the best segmentations. Table 7.1
summarizes all the parameters of IS2R.

As suggested in section 7.7, a further stage of region merging is incorporated into IS2R to alleviate
the incidence of over-segmentation in cases where objects of the scene exhibit several singular points.
To this end a very simple region merging algorithm based on reflectance similarity has been adopted
along the experiments of the following sections. Furthermore, isolated pixels that result unlabelled
because they did not pass the consistency test on any occasion are finally added to the adjacent region
closer in colour space. This last step would correspond to the results post-processing box of figures 4.2
and 4.7.

As will be seen later, IS2R was faced against synthetic images, first without noise and next with
noise. In this way, it was intended to show the performance of the segmentation algorithm under the
most controlled conditions. When processing noiseless images, intensity uncertainties were removed
from expression 7.31 when performing the consistency tests (i.e. ǫ2 = 0). They were, however, used in
the experiments with noisy images. Besides, when gray-level images were involved in the experiments,
intensity uncertainties were recalculated using the coefficients appearing in equation 7.3213. That is to
say:

δ(D) = 0.2989 δ(DR) + 0.5870 δ(DG) + 0.1140 δ(DB) (7.36)

Furthermore, in this section, IS2R will be compared with the following segmentation methods: the
physics-based algorithms by Klinker et al. [129] (KLN from now on) and Gevers [68] (GEV from now
on), together with the non-physics-based algorithm by Comaniciu and Meer published in [29]14 (C&M
from now on). During the comparison, parameters for KLN, GEV and IS2R are set up according to
the requirements of the particular experiment, in order to obtain the best performance; accordingly,

13 Remember that the method for computing intensity uncertainties of chapter 6 produces intensity uncertain-
ties for every colour channel.

14 The code is publicly available at http://www.caip.rutgers.edu/ c̃omanici/segm images.html
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Table 7.1. Summary of parameters of IS2R.

parameter description

2Rsp + 1 Side of the square area used to determine whether an image
point corresponds to a singular point

∆R0 Maximum number of intensity levels between the singular point
and the pixels of R0

2RR0 + 1 Side of the square area used to grow R0

2Rlf + 1 Side of the square area used for local fitting

ǫf Multiplicative factor related to the fitting error (equation 7.26)

nD Number of pixels used to estimate the mean deviation between
predicted and actual intensity in the consistency test

nA Number of pixels used to compare predicted and actual intensity
in the consistency test, to discard or accept a given pixel

ǫ1, ǫ2, ǫ3 Parameters of the deviation model used in the consistency test
(equation 7.31)

they are explicitly indicated in every case. The C1C2C3 space has been selected among the three
colour spaces suggested by Gevers in [68] as the working space for the GEV algorithm, since it pro-
vides invariance to objects curvature. On the other hand, C&M selects automatically the algorithm
parameters according to the type of result required: under-segmentation, over-segmentation and quan-
tization. Given that non-physics-based segmentation algorithms tend to over-segment the image, the
under-segmentation option is chosen in all the experiments where C&M is involved.

Finally, as suggested in section 4.4.2, segmentation performance will be measured regarding both
the classification and the contour localization aspects. The corresponding quantitative results will be
provided in a section devoted to comparing IS2R with the above-mentioned segmentation algorithms.
On the other hand, unless otherwise stated, the CG(90), OS(90) and US(90) measures defined in sec-
tion 4.4.2 will be used for the classification aspect of image segmentation, while the contour localization
facet will be measured mostly by means of the Baddeley’s measure (the (90) will be removed from CG,
OS and US for the sake of simplicity in the following sections). Regarding the performance on shape
reconstruction, since this part of IS2R is executed by the B&P algorithm, it is suggested to refer to
the original paper or to the surveys by Zhang et al. [302–304].

7.9.1 A detailed example

Figure 7.6 details the stages and intermediate results produced by IS2R for a simple synthetic colour
image. Throughout all the process, unlabelled pixels are indicated in black. In the figure, step (1) shows
the regions R0 found, and, consequently, the location of the respective singular points. Next, step (2)
presents the result of the incorporation of new pixels to every region by means of the application of
the consistency tests over global surface fitting (i.e. the whole region is fitted by a quadric). In step
(3), regions are considered for new extensions through the consistency test again, but now by means
of local surface fitting (i.e. small areas around the pixel to be added are fitted by a quadric). Next, in
step (4), regions with similar reflectance are merged. Finally, after adding unlabelled pixels to most
similar adjacent regions, step (5) is reached with the final segmentation result.

7.9.2 Segmentation results for noiseless synthetic images

All the experiments of this section were performed over synthetic scenes consisting of surfaces of
increasing difficulty and different reflectance combinations. Figure 7.7 shows the shape of those scenes.

The scene of figure 7.7(a) consists of a hemisphere over a plane background. It was generated using
the formula:

Z(x, y) =
√

302 − (x − 65)2 − (y − 65)2 (7.37)
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Fig. 7.6. A detailed example of how IS2R works. (The row in the middle shows the progression of the
segmentation, while the lower row presents the corresponding region contours.)

(a) (b) (c)

Fig. 7.7. Synthetic scenes used to test IS2R: (a) SPHERE scene; (b) PARABOLOIDS scene; (c) VASE scene.
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Table 7.2. Parameters used in the SPHERE, PARABOLOIDS and VASE scenes.

Rsp ∆R0 RR0 Rlf ǫf nD nA ǫ1 ǫ3
7 10 15 5 100 6 1 2 1

Table 7.3. Results for the SPHERE, PARABOLOIDS and VASE scene cases.

scene lighting reflectances recovered

(0,0,-1) 0.902, 0.600, 0.302
(a) SPHERE (1,0,-1) 0.898, 0.600, 0.302

(1,1,-1) 0.898, 0.600, 0.302

(0,0,-1) 1.000, 0.800, 0.498
(b) PARABOLOIDS (-1,0,-1) 0.996, 0.796, 0.498

(-1,1,-1) 1.000, 0.796, 0.498

( 0,0,-1) 0.898, 0.400, 0.302
(c) VASE (-1,0,-1) 0.898, 0.400, 0.302

(-1,-1,-1) 0.843, 0.400, 0.302

The second synthetic scene considered is shown in figure 7.7(b) and is a combination of four paraboloids,
as equation 7.38 indicates:

Z(x, y) = max{z1(x, y), z2(x, y), z3(x, y), z4(x, y)} (7.38)

z1(x, y) = 20 − (x + 15)2

50
− (y − 15)2

50

z2(x, y) = 30 − (x − 15)2

40
− (y − 15)2

30

z3(x, y) = 50 − (x − 30)2

40
− (y + 30)2

60

z4(x, y) = 20 − (x + 30)2

20
− (y + 30)2

20
−60 ≤ x ≤ 60, −60 ≤ y ≤ 60

Unlike the SPHERE scene, the PARABOLOIDS scene contains several curved singular points and
the corresponding curved surfaces overlap. Finally, the third synthetic scene, shown in figure 7.7(c),
consists of a synthetic vase over a plane background, which is typical from SFS performance evaluation
studies [303]. The corresponding surface can be expressed as follows:

Z(x, y) =
√

f(y)2 − x2 (7.39)

f(y) = 0.15 − 0.1 y (6y + 1)2(y − 1)2(3y − 2)

−0.5 ≤ x ≤ 0.5, 0.0 ≤ y ≤ 1.0

Contrary to the previous scenes, this one includes a surface consisting of several curved singular points
and it is not a quadric itself. That is to say, the actual surface does not coincide with the surface model
of the fitting stage of IS2R.

In all the experiments, white illumination was simulated, being the ambient lighting strength set
to La = 0.08 × 255 = 20.4 for all channels and the point light source strength Ld = 0.92 × 255 =
234.6, also for all channels. On the other hand, once an image was segmented, all the scenes were
reconstructed providing the B&P algorithm with true heights at singular points. Finally, the parameter
values indicated in table 7.2 were used in all cases. As can be observed, nA remained set to 1 in all
cases, which means the consistency test just needed the information of one point to make a decision.

Figure 7.8 presents segmentation and reconstruction results for gray-level images of the SPHERE
scene and three lighting orientations: (0, 0,−1), (1, 0,−1) and (1, 1,−1). In the experiment, the re-
flectance of the hemisphere was set to 0.9, while the plane at the background is a sort of checker board,
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(a) (b) (c)

Fig. 7.8. Segmentation of the gray-level SPHERE images and shape reconstruction by means of IS2R. Light
source directions: (a) (0, 0,−1), (b) (1, 0,−1), (c) (1, 1,−1). The original scene and its contour plot appears
in the upper row while the contour plots of the recovered scene for (a), (b) and (c) appear in the lower
row. The upper corner of each scene corresponds to the origin of the image coordinates. Region contours are
superimposed over original images.

with reflectances 0.6 and 0.3. Table 7.3(a) shows the reflectances recovered. The slight deviations which
can be observed are due to the discretization of intensity. On the other hand, none of the image pixels
was incorrectly classified by IS2R.
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Figure 7.9 presents segmentation and reconstruction results for gray-level images of the PARA-
BOLOIDS scene and three lighting orientations: (0, 0,−1), (−1, 0,−1) and (−1, 1,−1). As for the
scene materials, the reflectance of neighbouring paraboloids z2 and z3 was set to 0.8, while for z1

and z4 they were, respectively, 1 and 0.5. Table 7.3(b) shows the reflectances estimated. Again none
of the image pixels was incorrectly classified and the same sort of slight deviations in the recovered
reflectances is observed.

Figure 7.10 presents segmentation and reconstruction results for gray-level images of the VASE
scene and three lighting orientations: (0, 0,−1), (−1, 0,−1) and (−1,−1,−1). As well as for the
SPHERE scene, the plane background was a sort of checker board, with reflectances 0.4 and 0.3,
while the reflectance of the vase was 0.9. Table 7.3(c) shows the recovered reflectances. Contrary to
the previous scenes, not all the reflectances are correctly recovered. This is the case of the vase, and
the error comes from a bad election of the singular point. The segmentations are, nevertheless, perfect
again.

As a final part of the experiment with noiseless synthetic images, IS2R was faced against the same
set of scenes and lighting conditions, but now coloured materials were considered. The new images
and the corresponding results are provided in figure 7.11. This time no reconstruction results are
given since they have already been supplied for the black and white images. As for the estimated
reflectances, again slight deviations took place. Finally, once more, the segmentations produced show
no misclassified pixels.

7.9.3 Experiments with real images

As for the experiments with real images, three sets of experiments were performed. The first set included
three scenes constituted by high-curvature objects representable by quadric surfaces and three lighting
configurations. In the second set, several scenes with the same lighting configuration and involving
non-quadric real surfaces were considered. In both image sets, a special care was taken in order not to
introduce objects whose surface materials could violate the image formation model assumed by IS2R.
To this end, the experiments were performed over pieces of clothing, plushes, cork objects and other
objects painted in matte paint. Besides, all scenes were arranged over a piece of black fabric in order
to avoid disturbances from the background. Finally, the third set of images consisted of several scenes
with objects violating the image formation model required by IS2R to check its dependence on this
aspect.

On the other hand, in order to prevent the process of image formation from being affected by
camera clipping, the camera iris was adjusted to control the amount of light entering the camera.
The scenes were illuminated by an halogen lamp in different configurations to simulate different light
source orientations. In this way, ambient lighting appeared in the form of inter-reflections on the walls
and other objects. Finally, images were pre-smoothed because improvements on the determination of
singular points and on the behaviour of the SFS algorithm were detected under those conditions. This
pre-processing of the image was intended to counteract the non-inclusion of intensity uncertainties in
both the localization of singular point localization and the computation of shape information.

Figure 7.12 shows the images for estimating the lighting conditions for every lighting configuration
of the first set, together with the estimation results. As can be seen, the light comes from the side in
configurations (b) and (c), while in case (a) the light source direction is nearly parallel to the optical
axis.

Segmentation and reconstruction results for the three scenes can be found in figures 7.13, 7.14
and 7.15. The corresponding parameters appear in table 7.4, while table 7.5 list the reflectances recov-
ered for each case.

As can be seen, good segmentations are obtained in all three lighting configurations and for the
three scenes. As for the parameters, they were very stable among scenes and lighting configurations, as
can be observed. It is worth noting how the side of the square area used to compute the singular points
map was increased to a value of 2 × 13 + 1 pixels. In fact, it is not needed in all cases, but, generally
speaking, a larger side improves significantly the localization of singular points across the image.

Regarding the relative reflectance constancy across lighting configurations which was theoretically
hypothesized in section 7.3, equation 7.23, the reflectances recovered for the same object in each case
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(a) (b) (c)

Fig. 7.9. Segmentation of the gray-level PARABOLOIDS images and shape reconstruction by means of IS2R.
Light source directions: (a) (0, 0,−1), (b) (−1, 0,−1), (c) (−1, 1,−1). The original scene and its contour plot
appears in the upper row while the contour plots of the recovered scene for (a), (b) and (c) appear in the lower
row. The upper corner of each scene corresponds to the origin of the image coordinates. Region contours are
superimposed over original images.
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(a) (b) (c)

Fig. 7.10. Segmentation of the gray-level VASE images and shape reconstruction by means of IS2R. Light
source directions: (a) (0, 0,−1), (b) (−1, 0,−1), (c) (−1,−1,−1). The original scene and its contour plot
appears in the upper row while the contour plots of the recovered scene for (a), (b) and (c) appear in the lower
row. The upper corner of each scene corresponds to the origin of the image coordinates. Region contours are
superimposed over original images.
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(a)

(b)

(c)

Fig. 7.11. Segmentation of the SPHERE, PARABOLOIDS and VASE colour images by IS2R. For every group
of images, the first row is for the original images and the second row shows the same image with region contours
superimposed after segmentation.
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s = (0.16, 0.16,−0.97) s = (−0.02, 0.51,−0.86) s = (0.55, 0.41,−0.72)
Laρb,C = 53.01 Laρb,C = 33.23 Laρb,C = 16.93
Ldρb,C = 143.24 Ldρb,C = 119.23 Ldρb,C = 169.52

(a) (b) (c)

Fig. 7.12. Lighting conditions for IS2R corresponding to the first set of experiments with real images.

Table 7.4. Parameters used by IS2R in the three scenes of the first set of real images.

scene lighting Rsp ∆R0 RR0 Rlf ǫf nD nA ǫ1 ǫ2 ǫ3

(a) 13 10 15 5 100 6 2 2 3 3
1st (b) 13 10 15 5 100 6 2 2 3 3

(c) 13 10 15 5 100 6 2 2 3 3

(a) 13 10 15 5 100 6 2 2 3 3
2nd (b) 13 10 15 5 100 6 2 2 3 3

(c) 13 10 15 5 100 6 2 2 3 3

(a) 13 10 15 5 100 6 2 2 3 3
3rd (b) 13 10 15 5 100 6 2 2 3 3

(c) 13 10 15 5 100 6 2 2 3 3

Table 7.5. Reflectances recovered by IS2R for the three scenes of the first set of real images. (The reflectance
of black areas is 0.000)

scene lighting reflectances recovered

(a) 0.999, 0.535, 0.438
1st (b) 1.076, 0.558, 0.394

(c) 0.649, 0.370, 0.349

(a) 1.126, 0.530, 0.479
2nd (b) 1.036, 0.479, 0.387

(c) 0.821, 0.359, 0.252

(a) 1.090, 0.948, 0.851, 0.428, 0.311
3rd (b) 1.253, 1.148, 0.945, 0.531, 0.315

(c) 0.928, 0.778, 0.697, 0.349, 0.236

are relatively similar, although care should be taken if a higher accuracy was needed. The differences
which are observed can be attributed to either the noise of the images and some specularities which
could not be avoided (in glossy objects, specularities can be easily confounded with singular points
as they are also local maxima of brightness). This could also be the cause of the reflectance having
value above 1 in some cases. Nonetheless, those discrepancies were not enough so as to compromise
the computation of good segmentations.

Figure 7.17 provides segmentation results for colour images of the previous scenes. As can be
observed once more, quite reasonable segmentation results are obtained. The images for estimating
the lighting conditions, together with the respective estimations, appear in figure 7.16. The parameter
values are the same as for the black and white images (table 7.4).
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Fig. 7.13. Results of IS2R for the first scene of the first set of images: [1st row] scenes (images have been
enhanced to improve visualization and printing); [2nd row] segmentation results (region contours are superim-
posed over original images); [3rd row] height maps after rotation; [4th row] contour plots. The columns order
corresponds to figure 7.12.

Figure 7.18 shows lighting estimation results for the second set of real scenes, while figures 7.19
and 7.20 present the corresponding segmentation and reconstruction results. The parameter values
are indicated in table 7.6. This new set of real images consists of plushes (figure 7.19) and pieces of
clothing (figure 7.20), which bring more complex surfaces than the ones of the first set. This time most
part of the images are well segmented but, in some specific cases, misclassification takes place. For
instance, this is the case of the duck image, figure 7.19(a), where the beak is merged with a shadow in
the left side of the head’s duck because of a very smooth transition from the beak to the shadow. Small
details, such as the eyes of the different toys, are also wrongly segmented because the corresponding
singular points are not detected due to the value given to Rsp. Consequently, no region was grown
and the respective pixels were added to the surrounding region. As can be observed in the values of
the parameters shown in table 7.6, some fine tuning was needed for this set of images. Of particular
relevance is the fact that the side of the square area used to build the singular points map had to
be adapted to almost every image in order to locate the largest amount of singular points. It is also
noteworthy that the parameters related with the consistency test need not be modified from image to
image.
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Fig. 7.14. Results of IS2R for the second scene of the first set of images: [1st row] scenes (images have
been enhanced to improve visualization and printing); [2nd row] segmentation results (region contours are
superimposed over original images); [3rd row] height maps after rotation; [4th row] contour plots. The columns
order corresponds to figure 7.12.

Table 7.6. Parameters used by IS2R in the different scenes of the second set of real images.

image Rsp ∆R0 RR0 Rlf ǫf nD nA ǫ1 ǫ2 ǫ3

7.19(a) 11 10 15 5 100 6 2 2 3 3

7.19(b) 11 10 15 5 100 6 2 2 3 3

7.19(c) 5 2 5 5 100 6 2 2 3 3

7.19(d) 7 5 5 5 100 6 2 2 3 3

7.20(a) 11 10 15 5 100 6 2 2 3 3

7.20(b) 7 10 15 5 100 6 2 2 3 3

7.20(c) 13 10 15 5 100 6 2 2 3 3

7.20(d) 19 10 15 5 100 6 2 2 3 3

Segmentation results for colour images of the previous scenes are provided in figure 7.22. The
behaviour exhibited by IS2R in the case is the same as for the gray-level images. Lighting conditions
data is given in figure 7.21. The parameter values are the same as for the black and white images
(table 7.6).
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Fig. 7.15. Results of IS2R for the third scene of the first set of images: [1st row] scenes (images have been
enhanced to improve visualization and printing); [2nd row] segmentation results (region contours are superim-
posed over original images); [3rd row] height maps after rotation; [4th row] contour plots. The columns order
corresponds to figure 7.12.

s = (0.16, 0.17,−0.97) s = (0.04, 0.54,−0.84) s = (0.56, 0.42,−0.71)
Laρb,C = (63.01, 47.80, 40.15) Laρb,C = (37.41, 37.40, 23.15) Laρb,C = (19.30, 12.33, 17.31)

Ldρb,C = (177.84, 137.32, 102.76) Ldρb,C = (116.72, 124.89, 92.40) Ldρb,C = (177.69, 179.10, 115.80)
(a) (b) (c)

Fig. 7.16. Lighting conditions for IS2R corresponding to the colour images of the first set of images.
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(a)

(b)

(c)

Fig. 7.17. Results of IS2R for colour images of the three scenes of the first set of images. For every group of
images, the first row is for the original images and the second row show the same image with region contours
superimposed after segmentation.
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s = (0.02, 0.36,−0.93)
Laρb,C = 51.11
Ldρb,C = 141.59

Fig. 7.18. Lighting conditions for IS2R corresponding to the second set of experiments with real images.

(a)

(b)

(c)

(d)

Fig. 7.19. Results of IS2R for the gray-level images of the TOYS scenes of the second set of images: [1st
column] scenes (images have been enhanced to improve visualization and printing); [2nd column] segmentation
results (region contours are superimposed over original images); [3rd column] height maps.
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(a)

(b)

(c)

(d)

Fig. 7.20. Results of IS2R for the gray-level images of the CLOTHING scenes of the second set of images: [1st
column] scenes (images have been enhanced to improve visualization and printing); [2nd column] segmentation
results (region contours are superimposed over original images); [3rd column] height maps.

s = (0.01, 0.32,−0.95)
Laρb,C = (67.16, 40.35, 26.15)

Ldρb,C = (171.73, 138.56, 118.98)

Fig. 7.21. Lighting conditions for IS2R corresponding to the second set of experiments with real images.
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Fig. 7.22. Results of IS2R for colour images of the TOYS and CLOTHING scenes of the second set of images:
[1st column] TOYS scenes; [2nd column] segmentation results (region contours are superimposed over original
images); [3rd column] CLOTHING scenes; [4th column] segmentation results (region contours are superimposed
over original images).

To finish with the experiments with real images, figure 7.23 shows results for colour images not
satisfying the image formation model required from a theoretical point of view by IS2R, or just images
more complex than the ones considered up until now. More precisely, the first row corresponds to
images where glossy objects appear, what leads to IS2R to consider specularities as singular points
and, thus, to create false regions. The two images on the left of the second row correspond to natural
scenes, where reflectance uniformity is typically violated. As a consequence, IS2R tends to produce over-
segmentation. Finally, the two images on the right of the second row are well-known images typically
used to test segmentation and edge detection algorithms. Furthermore, those images are likely to have
not been captured with gamma correction turned off. In the peppers image, again specularities are
put in different regions. Besides, over- and under-segmentation also appears. A common feature of the
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Fig. 7.23. Results of IS2R for the third set of images. (Region contours are superimposed over original images.)

images in the lower row of figure 7.23 is that no knowledge was available about the lighting parameters.
As well, uncertainties are artificial for the standard images.

7.9.4 Comparison with other segmentation algorithms

To finish, this section compares IS2R with KLN, GEV and C&M with both gray-level and colour
synthetic and real images.

First, IS2R was faced against increasing noise conditions over synthetic images and compared with
KLN and GEV. To this end, the synthetic images were generated following pseudocode 6.3 using new
noise models corresponding to multiplying by a scalar k the standard deviations of the noise sources
involved in the process of image formation (i.e. σK , σdc and σc

f , in equation 6.11b of section 6.2.2).
k = 1..5 were the levels of noise considered, where k = 1 means normal noise conditions. Figure 7.24
shows examples of synthetic images for all levels. Note that k = 5 yields an uncertainty of 8.39 at
maximum intensity, which means the corresponding confidence interval includes up to 16 levels of
intensity for just t = 1; that is to say, the amount of noise corrupting the images for this level can
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(a) (b) (c) (d) (e)

Fig. 7.24. Examples of noisy synthetic images used for comparing IS2R, KLN and GEV: (a) noise×1; (b)
noise×2; (c) noise×3; (d) noise×4; (e) noise×5.

Table 7.7. Parameters for IS2R during the comparison under increasing noise conditions.

Rsp ∆R0 RR0 Rlf ǫf nD nA ǫ1 ǫ2 ǫ3
7 10 15 5 100 6 1 2 3 3

Table 7.8. Parameters for KLN during the comparison with IS2R under increasing noise conditions. (The
description of the parameters corresponds to the one used in the original paper [129, table 6].)

parameter description
value

noise×1 noise×2 noise×3 noise×4 noise×5

window size (for initial grouping) 10 × 10
minimal area size 100 pixels
camera noise 2 3 6 9 15
cylinder width 6 8 16 24 30
minimal intensity 15

Table 7.9. Parameters for GEV during the comparison with IS2R under increasing noise conditions.

parameter description value

standard deviation for gaussian derivative
operators

1.0

maximum standard deviation for homoge-
neous regions (normalized between 0 and
255)

5.0

Tlow for hysteresis thresholding 0.9
Thigh for hysteresis thresholding 0.9

result very large. For every noise level, 100 images were generated and performance measures were
computed for all the algorithms.

According to the varying noise conditions, the intensity uncertainties used by IS2R were recalculated
for each level. The parameter values for IS2R during this experiment were chosen as the ones leading
to the best results across the experiments of the previous sections. They can be found in table 7.7.
The parameters of KLN were also modified from noise level to noise level in order to obtain the best
performance under the different operating conditions (see table 7.8). As for GEV, curiously, it produced
better results if the parameters were left constant and equal to the ones given in table 7.9.

The results for this experiment can be found in table 7.10 and in figure 7.25. As can be observed,
IS2R yields the best levels of correctly grouped pixels and under-segmentation, but tends to produce
increasing values of over-segmentation as noise goes up. As for the localization of material boundaries,
IS2R is the best up to k = 3. For increasing levels of noise, this aspect of segmentation performance
worsens up to reaching an average of more than 2 pixels of displacement with regard to true contours
at the largest noise level.
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Table 7.10. Comparison between IS2R, KLN and GEV under increasing noise conditions by means of synthetic
images: every entry of the table consists of average - standard deviation [minimum,maximum].

noise measure IS2R KLN GEV

×1

CG 96.20 - 6.72 92.89 - 11.71 74.24 - 22.70

[63.14,100.00] [27.75,100.00] [ 6.95,96.03]

OS 13.31 - 17.99 9.19 - 12.54 30.06 - 20.85

[ 0.00,97.02] [ 0.00,55.43] [ 1.28,100.00]

US 3.17 - 6.65 6.42 - 11.70 23.70 - 23.34

[ 0.00,34.93] [ 0.00,72.00] [ 1.34,93.03]

Baddeley 0.93 - 0.37 1.15 - 0.30 1.67 - 0.27

[ 0.01, 1.98] [ 0.26, 1.88] [ 1.08, 2.45]

×2

CG 96.83 - 5.39 95.55 - 9.93 77.32 - 17.38

[70.05,100.00] [62.91,100.00] [26.46,95.91]

OS 15.43 - 16.81 6.13 - 11.03 27.91 - 21.54

[ 0.00,99.05] [ 0.00,52.98] [ 0.23,100.00]

US 2.56 - 5.35 4.21 - 9.77 20.43 - 17.90

[ 0.00,29.95] [ 0.00,37.00] [ 1.35,72.62]

Baddeley 0.96 - 0.33 1.35 - 0.33 1.61 - 0.27

[ 0.04, 1.73] [ 0.04, 1.87] [ 1.07, 2.42]

×3

CG 95.91 - 5.46 88.06 - 16.93 79.36 - 15.80

[69.50,100.00] [37.95,100.00] [30.21,95.81]

OS 34.90 - 26.92 8.28 - 11.91 30.36 - 19.78

[ 0.00,100.00] [ 0.00,45.72] [ 1.36,100.00]

US 3.33 - 5.44 11.21 - 16.95 18.32 - 16.41

[ 0.00,29.83] [ 0.00,61.91] [ 1.35,69.10]

Baddeley 1.27 - 0.35 1.28 - 0.33 1.66 - 0.29

[ 0.33, 2.14] [ 0.42, 2.24] [ 0.87, 2.65]

×4

CG 94.42 - 6.84 71.39 - 30.60 80.75 - 18.29

[73.48,100.00] [ 0.20,100.00] [ 4.97,96.88]

OS 53.15 - 24.74 12.49 - 19.15 34.16 - 22.55

[ 0.21,100.00] [ 0.00,100.00] [ 0.61,90.96]

US 4.80 - 6.75 28.03 - 30.93 16.96 - 18.87

[ 0.00,24.82] [ 0.00,99.80] [ 0.00,94.89]

Baddeley 1.64 - 0.35 1.63 - 0.34 1.77 - 0.35

[ 0.92, 2.57] [ 0.84, 2.56] [ 1.15, 2.87]

×5

CG 91.02 - 8.28 63.56 - 27.99 77.59 - 18.82

[59.98,100.00] [ 7.94,100.00] [19.67,94.49]

OS 74.65 - 17.57 18.40 - 17.31 34.35 - 20.10

[10.32,100.00] [ 0.00,64.59] [ 4.63,84.88]

US 8.28 - 8.28 35.52 - 28.42 20.15 - 19.37

[ 0.00,39.41] [ 0.00,92.06] [ 1.70,80.03]

Baddeley 2.17 - 0.33 1.55 - 0.43 1.87 - 0.36

[ 1.39, 2.90] [ 0.82, 2.79] [ 1.10, 3.01]

In the second experiment of this section, IS2R, KLN, GEV and C&M are compared by means of
some of the noiseless synthetic and real gray-level and colour images used in other experiments. The
ground truths for the real images were manually generated making edges coincide with whole material
transitions so that the reference edge map can, and in fact do, contain thick edges (see figure 7.26). Since
KLN and GEV are not able to handle gray-level images, only results for colour images are provided
for them. The parameter values used for both algorithms appear in tables 7.11 and 7.12. Quantitative
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Fig. 7.25. Comparison between IS2R, KLN and GEV under increasing noise conditions by means of synthetic
images: plots of average values for the performance measures.

Table 7.11. Parameters for KLN during the comparison with IS2R by means of gray-level and colour synthetic
and real images. (The description of the parameters corresponds to the one used in the original paper [129, table
6].)

parameter description
value for image

7.11(a; left,middle,right) 7.17(c; left,middle,right)

window size (for initial grouping) 8 × 8 10 × 10
minimal area size 50 pixels 100 pixels
camera noise 6 9
cylinder width 2 4
minimal intensity 5 20

results are shown in tables 7.13 and 7.14 while the segmentation results appear in figures 7.27, 7.28,
and 7.29. In those figures, results for IS2R are replicated to make the qualitative comparison easier. As
can be observed, IS2R and KLN perform in a similar way, with a slight qualitative outperformance of
IS2R with regard to contour localization. GEV performs reasonably well with the synthetic images but
poorly with the colour real images, specially in case 7.29(c). Finally, due to the high curvature of the
objects in the scenes, C&M tends to produce considerable levels of both over- and under-segmentation,
except for the cases of figure 7.28.
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Table 7.12. Parameters for GEV during the comparison with IS2R by means of gray-level and colour synthetic
and real images.

parameter description
value for image

7.11(a; left,middle,right)
7.17(c)

(left) (middle) (right)

standard deviation for gaussian derivative
operators

1.0 1.0 1.0 1.0

maximum standard deviation for homoge-
neous regions (normalized between 0 and
255)

2.0 5.0 10.0 10.0

Tlow for hysteresis thresholding 0.4 0.4 0.4 0.4
Thigh for hysteresis thresholding 0.4 0.8 0.8 0.8

Table 7.13. Comparison between IS2R, KLN, GEV and C&M by means of gray-level synthetic and real
images. (n.a. stands for not available.)

IS2R KLN GEV C&M

7.8(left col)

CG 100.00 n.a. n.a. 100.00

OS 0.00 n.a. n.a. 27.48

US 0.00 n.a. n.a. 0.00

Baddeley 0.17 n.a. n.a. 1.18

7.8(mid. col)

CG 100.00 n.a. n.a. 27.45

OS 0.00 n.a. n.a. 15.00

US 0.00 n.a. n.a. 72.55

Baddeley 0.17 n.a. n.a. 1.07

7.8(rgt. col)

CG 100.00 n.a. n.a. 52.20

OS 0.00 n.a. n.a. 13.82

US 0.00 n.a. n.a. 47.80

Baddeley 0.18 n.a. n.a. 1.05

7.15(left col)

CG 98.38 n.a. n.a. 20.07

OS 0.00 n.a. n.a. 40.29

US 0.00 n.a. n.a. 79.93

Baddeley 0.61 n.a. n.a. 0.95

7.15(mid. col)

CG 98.76 n.a. n.a. 21.63

OS 19.18 n.a. n.a. 52.52

US 0.00 n.a. n.a. 78.37

Baddeley 0.48 n.a. n.a. 0.89

7.15(rgt. col)

CG 98.52 n.a. n.a. 63.76

OS 58.89 n.a. n.a. 100.00

US 0.00 n.a. n.a. 35.79

Baddeley 0.67 n.a. n.a. 1.29

7.10 Conclusions

This chapter has presented a segmentation algorithm called IS2R (Image Segmentation by Scene Re-
construction) insensitive to scene curvature. To this end, reflectance values of the scene objects are
estimated by means of singular points and the scene shape is progressively reconstructed in order to
predict intensity values to be compared with real intensity values in a so-called consistency test, what
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Table 7.14. Comparison between IS2R, KLN, GEV and C&M by means of colour synthetic and real images.

IS2R KLN GEV C&M

7.11(a,left)

CG 100.00 100.00 98.90 100.00

OS 0.00 0.00 0.00 0.00

US 0.00 0.00 1.09 0.00

Baddeley 0.17 1.17 1.21 0.41

7.11(a,middle)

CG 100.00 100.00 98.86 100.00

OS 0.00 0.00 0.00 0.00

US 0.00 0.00 1.09 0.00

Baddeley 0.17 0.84 1.21 0.69

7.11(a,right)

CG 100.00 100.00 98.86 100.00

OS 0.00 0.00 0.00 0.00

US 0.00 0.00 1.09 0.00

Baddeley 0.17 0.84 1.21 0.71

7.17(c,left)

CG 98.69 97.62 95.73 99.18

OS 0.03 1.49 9.99 40.27

US 0.00 0.82 1.21 0.15

Baddeley 0.54 1.09 1.01 0.92

7.17(c,middle)

CG 98.97 98.76 66.39 98.32

OS 19.18 39.75 19.18 52.60

US 0.00 0.54 32.99 0.26

Baddeley 0.43 1.32 0.79 0.99

7.17(c,right)

CG 97.68 98.45 79.28 82.34

OS 64.81 0.10 91.35 100.00

US 0.00 0.31 19.72 17.12

Baddeley 0.84 1.32 1.39 1.29

Fig. 7.26. Ground truths for the real images used in the comparison between IS2R, KLN, GEV and C&M:
figures 7.15 and 7.17(c).

allows making a decision about whether a pixel must join a certain region or not. Experimental results
for both synthetic and real images have been provided.

During the experiments performed, both colour and gray-level images have been considered and no
difference in performance has been noticed. On the other hand, algorithm parameters have resulted to
be quite stable, except those related with spatial dimensions, specially for the determination of singular
points. In this case, some fine tuning has been needed.

Although the experimental results prove IS2R is able to deal with scenes with curved objects,
its general applicability has been compromised by the limited sort of images which can correctly be
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(a) (b) (c)

IS2R

C&M

IS2R

C&M

Fig. 7.27. Segmentation results for IS2R and C&M for the images of figures 7.8 and 7.15.
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(a) (b) (c)

IS2R

KLN

GEV

C&M

Fig. 7.28. Segmentation results for IS2R, KLN, GEV and C&M for the images of figure 7.11(a).
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(a) (b) (c)

IS2R

KLN

GEV

C&M

Fig. 7.29. Segmentation results for IS2R, KLN, GEV and C&M for the images of figure 7.17(c).
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segmented. In particular, IS2R is not very tolerant to deviations of the theoretical image formation
model, namely specularities, reflectance non-uniformities and small details. One of the clear points
for this limitation is the SFS algorithm which is embedded in IS2R for estimating shape information.
Nevertheless, the very basis of IS2R is also the cause for its low performance in certain cases, since the
use of the prediction of the intensity values means a strong agreement must exist between images and
the image formation model, what not always takes place. This fact suggests that other strategies based
on contours instead of regions can succeed with complex images. Furthermore, IS2R needs information
from the scene which can limit its applicability in some scenarios.

It is also noteworthy the fact that the lighting estimation method CPAM-TEAV of chapter 5 has
produced very consistent estimates when analyzing the same conditions of illumination over gray-level
and colour images (figures 7.12 and 7.16, and figures 7.18 and 7.21).

Finally, regarding execution times, although they have not been provided in the experimental results
section, some data can be given now. On the one hand, the different experiments performed have shown
that IS2R can require from 2-3 seconds up to 1-2 minutes to produce a segmentation. This coincides
with its dependence on the image data involved in every case. In the cases of KLN and C&M, both have
needed on the order of 1-2 minutes at most. Finally, the execution time of GEV has oscillated between
less than a minute and up to 15 minutes depending on the image. These long times are because the
splitting stage of GEV implies considering several triangulation scenarios for every edge point in order
to take the triangulation best describing the scene, so that the larger the number of edges, the larger
the execution time. All the executions were performed over a Pentium IV @ 3GHz machine.
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Analysis of Colour Channels Coupling and Edge Detection

This chapter shows that, according to the physics-based model of image formation introduced in
chapter 4, in uniform reflectance areas colour channels are coupled by the reflectance of the surface
material, while, in reflectance transition zones, such coupling can be broken in a number of ways.
Consequently, material changes can be found by looking for violations of this coupling. This fact is
used to devise an edge detection algorithm based on colour channel coupling analysis called C3E (Colour
Channel Coupling-based Edge detection). This edge detection algorithm produces an edge map whose
edges correspond to scene locations where a reflectance change is taking place. Moreover, chapter 9
proposes and discusses an image segmentation algorithm using this edge map as the starting point.

The rest of the chapter is organized as follows: sections 8.1, 8.2, 8.3 and 8.4 investigate on the
properties of uniform reflectance areas according to the image formation model presented in chapter 4;
section 8.5 enunciates a compatibility relationship among pixels based on the colour channel coupling
analysis proposed in the previous sections; section 8.6 discusses about the coverage of reflectance
transitions achieved by analysis of colour channels coupling; section 8.7 comments on the use of all
the aforementioned to compute an edge map representing the reflectance changes of the imaged scene;
next, section 8.8 comments on the thickness of the edges produced and proposes a thinning strategy;
section 8.9 presents the experiments performed and the corresponding results, and, finally, conclusions
appear in section 8.10.

8.1 General Properties of Uniformly Coloured Image Areas

In the following, a set of properties of uniformly coloured image areas will be discussed. For the time
being, noiseless intensity values will be assumed. Noisy measurements will be considered in a later
section, when discussing the implementation of an edge detection algorithm whose basis lies on the
aforementioned properties.

Within an image area whose pixels correspond to scene points belonging to the same material, the
ambient, body and interface colours are constant (i.e. ρb(i, j;λ) = ρb(λ) and ρi(i, j;λ) = ρi(λ) and, by
extension, also ρa(i, j;λ) = ρa(λ) because of its dependence on exclusively ρb and ρi). In a noiseless
environment, changes in the pixel values between image locations are, thus, only due to changes in the
geometrical factors mb and mi. As a consequence, in areas of uniform reflectance, colour channels keep
coupled, in the sense that they are not free to take any intensity value, but they depend on the values
taken by the other colour channels through the body and interface reflectances and the way they are
combined in the image formation model.

This coupling can be observed from the shape of the cluster constituted by the set of pixels cor-
responding to a uniformly coloured object in colour space. As it is predicted by the Dichromatic
Reflection Model by Shafer [252] (section 2.3.4), in general, these pixels are confined within the par-
allelogram defined by the ambient, body and interface colours; in case of a non-glossy object, the
parallelogram reduces to the straight line defined by the ambient and the body colours. The coupling
manifests, therefore, in the form of this confinement; that is to say, the corresponding pixels are not
allowed to “jump” outside the cluster. This fact, although not explicitly mentioned, is exploited by
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many physics-based segmentation algorithms, either by the analysis of colour clusters or by means of
photometric invariants (see [68,76,129,194,203,204], just to cite some of them). Image noise, however,
deforms clusters and make photometric invariants to be not so invariant, which makes the quality
of the segmentation conditional on the accuracy of the estimations of the clusters parameters or the
invariants.

To overcome this problem, part of this work has been devoted to formulating a set of necessary
compatibility conditions which are satisfied by pixels corresponding to the same scene material. In
this way, failure to meet any of these conditions implies the pixels involved cannot be grouped into
the same region. As a result of this study, up to three necessary compatibility conditions have been
identified. They are formulated in the form of the following properties:

Property 1 For any pair of colour channels c1 and c2 and any two image locations (i1, j1) and
(i2, j2) corresponding to the same scene material,

(1) Dc1(i1, j1) ≥ Dc2(i1, j1) ⇔ Dc1(i2, j2) ≥ Dc2(i2, j2)

(2) Dc1(i1, j1) ≤ Dc2(i1, j1) ⇔ Dc1(i2, j2) ≤ Dc2(i2, j2)

Property 2 For any pair of colour channels c1 and c2, any image location (i, j) not corresponding
to a material change, and any direction ξ over the image plane,

(1)

(
dDc1(i, j)

dξ

)
≥ 0 ⇔

(
dDc2(i, j)

dξ

)
≥ 0

(2)

(
dDc1(i, j)

dξ

)
≤ 0 ⇔

(
dDc2(i, j)

dξ

)
≤ 0

Property 3 For any pair of colour channels c1 and c2 and any two image locations (i1, j1) and
(i2, j2) corresponding to the same scene material,

(1) Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc1(i1, j1) ≥ Dc2(i1, j1), or

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc1(i1, j1) ≤ Dc2(i1, j1)

⇔ Dc1(i1, j1) − Dc2(i1, j1) ≥ Dc1(i2, j2) − Dc2(i2, j2)

(2) Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc1(i1, j1) ≤ Dc2(i1, j1), or

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc1(i1, j1) ≥ Dc2(i1, j1)

⇔ Dc1(i1, j1) − Dc2(i1, j1) ≤ Dc1(i2, j2) − Dc2(i2, j2)

The previous properties characterize in fact the three following facts:

• Colour channels do not cross one another (property 1). As a consequence, colour channels are
ordered in regions of uniform reflectance in the sense that, if for pixel (i1, j1) the intensity for
channel c1 is “above” the intensity of channel c2 (i.e. the intensity in channel c1 is larger than in
channel c2), then for any pixel (i2, j2) in the same region, colour channel c1 will also be “above”
colour channel c2.

• Colour channels vary in a coordinated way: when one changes, so do the others, and in the same
sense, all increase or all decrease (property 2). Observe that another form of this property is as
follows: “Given two image locations (i1, j1) and (i2, j2) corresponding to the same scene material,
Dc1(i1, j1) ≥ Dc1(i2, j2) if and only if Dc2(i1, j1) ≥ Dc2(i2, j2), and the same applies for ≤”.

• As the intensity in one channel decreases, so does the difference between colour channel intensities;
the opposite happens when the intensity in one channel increases (property 3). Notice that the
property is formulated so as to take into account the four possible cases:
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(a) if Dc1(i1, j1) ≥ Dc2(i1, j1) (channel c1 is “above” channel c2) and

(i) Dc1(i1, j1) ≥ Dc1(i2, j2) (intensity decreases between (i1, j1) and (i2, j2)),

Dc1(i1, j1) − Dc2(i1, j1) ≥ 0 is above Dc1(i2, j2) − Dc2(i2, j2) ≥ 0 (case (1), 1st row)

(ii) Dc1(i1, j1) ≤ Dc1(i2, j2) (intensity increases between (i1, j1) and (i2, j2)),

Dc1(i1, j1) − Dc2(i1, j1) ≥ 0 is below Dc1(i2, j2) − Dc2(i2, j2) ≥ 0 (case (2), 2nd row)

(b) if Dc1(i1, j1) ≤ Dc2(i1, j1) (channel c1 is “below” channel c2) and

(i) Dc1(i1, j1) ≥ Dc1(i2, j2) (intensity decreases between (i1, j1) and (i2, j2)),

Dc1(i1, j1) − Dc2(i1, j1) ≤ 0 is below Dc1(i2, j2) − Dc2(i2, j2) ≤ 0 (case (2), 1st row)

(ii) Dc1(i1, j1) ≤ Dc1(i2, j2) (intensity increases between (i1, j1) and (i2, j2)),

Dc1(i1, j1) − Dc2(i1, j1) ≤ 0 is above Dc1(i2, j2) − Dc2(i2, j2) ≤ 0 (case (1), 2nd row)

8.2 Particularization of the General Properties

The fulfillment of properties 1-3 depends on the particular instantiation of the image formation model
(equations 4.4 and 4.6). Four cases are distinguished:

• Case 1: non-glossy pixels/without ambient lighting
• Case 2: non-glossy pixels/with ambient lighting
• Case 3: glossy pixels/without ambient lighting
• Case 4: glossy pixels/with ambient lighting

They are all revised in the following sections.

8.2.1 Case 1: non-glossy pixels/without ambient lighting

If interface reflection and ambient lighting are not taken into account, the intensity of every colour
channel is reduced to the following expression:

Dc(i, j) = mb(i, j)C
c
b (i, j) . (8.1)

In such a case, the three properties are met. In other words, assuming the model of equation 8.1,
in uniform reflectance areas, colour channels do not cross one another, they vary coordinately, and the
difference between colour channel intensities decreases as the intensity in anyone of them decreases.
These facts are stated in the following three propositions, whose proofs can be found in appendix B.

Proposition 8.1. Assuming ambient lighting is negligible and directional illumination is uniform
throughout the scene, for any pair of colour channels c1 and c2, and any two image locations (i1, j1)
and (i2, j2) coming from the same scene material, such that interface reflection is negligible, i.e.
Dc

i (i1, j1) = 0 and Dc
i (i2, j2) = 0,

(1) Dc1(i1, j1) ≥ Dc2(i1, j1) ⇔ Dc1(i2, j2) ≥ Dc2(i2, j2)

(2) Dc1(i1, j1) ≤ Dc2(i1, j1) ⇔ Dc1(i2, j2) ≤ Dc2(i2, j2)
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Proposition 8.2. Assuming ambient lighting is negligible and directional illumination is uniform
throughout the scene, for any pair of colour channels c1 and c2, any image location (i, j) not
corresponding to a material change, such that interface reflection is negligible, i.e. Dc

i (i, j) = 0,
and any direction ξ over the image plane,

(1)

(
dDc1(i, j)

dξ

)
≥ 0 ⇔

(
dDc2(i, j)

dξ

)
≥ 0

(2)

(
dDc1(i, j)

dξ

)
≤ 0 ⇔

(
dDc2(i, j)

dξ

)
≤ 0

Proposition 8.3. Assuming ambient lighting is negligible and directional illumination is uniform
throughout the scene, for any pair of colour channels c1 and c2, and any two image locations (i1, j1)
and (i2, j2) coming from the same scene material, such that interface reflection is negligible, i.e.
Dc

i (i1, j1) = 0 and Dc
i (i2, j2) = 0,

(1) Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc1(i1, j1) ≥ Dc2(i1, j1), or

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc1(i1, j1) ≤ Dc2(i1, j1)

⇔ Dc1(i1, j1) − Dc2(i1, j1) ≥ Dc1(i2, j2) − Dc2(i2, j2)

(2) Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc1(i1, j1) ≤ Dc2(i1, j1), or

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc1(i1, j1) ≥ Dc2(i1, j1)

⇔ Dc1(i1, j1) − Dc2(i1, j1) ≤ Dc1(i2, j2) − Dc2(i2, j2)

8.2.2 Case 2: non-glossy pixels/with ambient lighting

Now, the resultant image formation model is given by:

Dc(i, j) = Cc
a(i, j) + mb(i, j)C

c
b (i, j) . (8.2)

In this case, only property 2 is met in general. Properties 1 and 3 require an additional hypothesis
to be applicable. All these facts are stated in the following lemma and propositions: (As before, formal
proofs can be found in appendix B.)

Lemma 8.4. If ambient illumination is proportional to directional illumination (i.e. La(λ) =
αLd(λ) [α ≥ 0],∀λ) and interface reflection is not involved in the reflected light, then, for any
material and any two colour channels c1 and c2:

(1) Cc1
a ≥ Cc2

a ⇔ Cc1

b ≥ Cc2

b

(2) Cc1
a ≤ Cc2

a ⇔ Cc1

b ≤ Cc2

b

Proposition 8.5. Assuming directional illumination is uniform throughout the scene and ambient
illumination is proportional to directional illumination, for any pair of colour channels c1 and c2,
and any two image locations (i1, j1) and (i2, j2) coming from the same scene material, such that
interface reflection is negligible, i.e. Dc

i (i1, j1) = 0 and Dc
i (i2, j2) = 0,

(1) Dc1(i1, j1) ≥ Dc2(i1, j1) ⇔ Dc1(i2, j2) ≥ Dc2(i2, j2)

(2) Dc1(i1, j1) ≤ Dc2(i1, j1) ⇔ Dc1(i2, j2) ≤ Dc2(i2, j2)
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Fig. 8.1. Four possible configurations of the straight line ∆D(i, j) = ∆Ca + mb(i, j)∆Cb.

Proposition 8.6. Assuming directional illumination is uniform throughout the scene, for any pair
of colour channels c1 and c2, any image location (i, j) not corresponding to a material change, such
that such that interface reflection is negligible, i.e. Dc

i (i, j) = 0, and any direction ξ over the image
plane,

(1)

(
dDc1(i, j)

dξ

)
≥ 0 ⇔

(
dDc2(i, j)

dξ

)
≥ 0

(2)

(
dDc1(i, j)

dξ

)
≤ 0 ⇔

(
dDc2(i, j)

dξ

)
≤ 0

Proposition 8.7. Assuming directional illumination is uniform throughout the scene and ambient
illumination is proportional to directional illumination, for any pair of colour channels c1 and c2,
and any two image locations (i1, j1) and (i2, j2) coming from the same scene material, such that
such that interface reflection is negligible, i.e. Dc

i (i1, j1) = 0 and Dc
i (i2, j2) = 0,

(1) Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc1(i1, j1) ≥ Dc2(i1, j1), or

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc1(i1, j1) ≤ Dc2(i1, j1)

⇔ Dc1(i1, j1) − Dc2(i1, j1) ≥ Dc1(i2, j2) − Dc2(i2, j2)

(2) Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc1(i1, j1) ≤ Dc2(i1, j1), or

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc1(i1, j1) ≥ Dc2(i1, j1)

⇔ Dc1(i1, j1) − Dc2(i1, j1) ≤ Dc1(i2, j2) − Dc2(i2, j2)

As for properties 1 and 3, the introduction of the ambient reflection term has led to the fact that
the sign of Dc1(i, j)−Dc2(i, j) does not determine, in the general case, the sign of the difference for any
other image point for the same scene material. In effect, for all the points (i, j) belonging to the same
scene material, the differences between colour channels c1 and c2, ∆D(i, j) = Dc1(i, j) − Dc2(i, j) =
(Cc1

a − Cc2
a ) + mb(i, j)(C

c1

b − Cc2

b ) = ∆Ca + mb(i, j)∆Cb, lie in a straight line with variables ∆D and
mb and parameters ∆Ca (intercept with ∆D axis) and ∆Cb (slope with mb axis). Observe that this
straight line can adopt any of the four configurations shown in figure 8.1. In cases (a) and (b), the signs
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of ∆Ca and ∆Cb are the same and, thus, coincide with the sign of ∆D for any value of mb. However, in
cases (c) and (d), the signs of ∆Ca and ∆Cb are different and only if mb(i1, j1) and mb(i2, j2) are both
above or both below P = Q = −∆Ca

∆Cb
(see figure 8.1) the signs of the differences Dc1(i1, j1)−Dc2(i1, j1)

and Dc1(i2, j2) − Dc2(i2, j2) are the same. The constraint relating ambient lighting with directional
illumination through the scale factor α ≥ 0 in propositions 8.5 and 8.7 force situations (a) and (b)
everywhere in the scene.

8.2.3 Case 3: glossy pixels/without ambient lighting

In this case, the intensity of every colour channel is given by the following expression:

Dc(i, j) = mb(i, j)C
c
b (i, j) + mi(i, j)C

c
i (i, j) . (8.3)

When interface reflection is introduced in the formation model, only property 1 is satisfied after a
slight modification of the formulation, as it is indicated in the following proposition: (For the formal
proof see again appendix B.)

Proposition 8.8. Assuming ambient lighting is negligible and directional illumination is uniform
throughout the scene, and assuming the NIR formation model, for any pair of colour channels c1

and c2, and any two image locations (i1, j1) and (i2, j2) coming from the same scene material,

(1) Dc1(i1, j1) ≥ Dc2(i1, j1)
Lc1

d

Lc2

d

⇔ Dc1(i2, j2) ≥ Dc2(i2, j2)
Lc1

d

Lc2

d

(2) Dc1(i1, j1) ≤ Dc2(i1, j1)
Lc1

d

Lc2

d

⇔ Dc1(i2, j2) ≤ Dc2(i2, j2)
Lc1

d

Lc2

d

where Lc
d = qc

0

∫
Λ

Ld(λ)τ c(λ)s(λ)dλ is the (scaled) radiance of the directional light source for colour
channel c.1

1 The procedure of multiplying colour channels by the quotient Lc1
d /Lc2

d has the effect of whitening the image.
For instance, in RGB space: (In the following, co-ordinates (i, j) will be omitted to simplify the notation.)
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Now, using the mean-value theorem over equation 4.4b (assume the continuity conditions required are
satisfied), Rb = ρR

b

[
qR
0

∫
Λ

Ld(λ)τR(λ)s(λ)dλ
]
, where ρR

b = ρb(λ0) for some λ0 ∈ Λ. In this way, Rb can

be put as ρR
b LR

d , and, analogously, Gb = ρG
b LG

d and Bb = ρB
b LB

d . If the same is applied to the interface
components, then:
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That is to say, the image intensities no longer depend on the colour of the illuminant, as if it was white-
coloured (i.e. L(λ) = L, ∀λ).

This effect can be achieved in real cameras through the function known as white balance. Making use of
this function, Stokman obtained invariance against specularities assuming the NIR model [262].
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In order for the previous proposition to be applicable, Lc
d must thus be estimated for every colour

channel c for the particular scene prior to its segmentation. Any of the methods presented in chapter 5
can be used for this purpose.

As for property 2, it is no longer true in general when interface reflection is incorporated into the
reflection model. This is because the derivative of the intensity in every channel not only depends now
on the sign of the derivative of mb but also on the derivative of mi:

(
dDc1(i, j)

dξ

)
= m′

b(i, j)C
c1

b + m′
i(i, j)C

c1
i

(
dDc2(i, j)

dξ

)
= m′

b(i, j)C
c2

b + m′
i(i, j)C

c2
i ,

where m′
b(i, j) and m′

i(i, j) are the first-order derivatives along direction ξ of mb(i, j) and mi(i, j),
respectively. As a consequence, in general:

m′
b(i, j)C

c1

b + m′
i(i, j)C

c1
i S 0 m′

b(i, j)C
c2

b + m′
i(i, j)C

c2
i S 0

m m
m′

b(i, j)C
c1

b S −m′
i(i, j)C

c1
i 6⇔ m′

b(i, j)C
c2

b S −m′
i(i, j)C

c2
i

Observe that the derivatives of both channels c1 and c2 will have the same sign if m′
b and m′

i

are both positive or both negative, or, in case their signs do not coincide, if the derivative of the
same reflection component dominates the sum in both cases (i.e. |m′

b(i, j)C
c1

b | S |m′
i(i, j)C

c1
i | and

|m′
b(i, j)C

c2

b | S |m′
i(i, j)C

c2
i |). By way of example, in the intensity profiles of figure 8.2, the dotted

lines enclose an area where m′
b and m′

i have different sign, but the derivatives of every colour channel
have all the same sign.

Finally, as for property 3, figure 8.2 shows precisely a case where it is not met. In effect, the intensity
levels of the green and blue channels within the area enclosed by the dotted lines are such that, when
the intensity increases in both, the difference between both channels does not increase, but decreases.

8.2.4 Case 4: glossy pixels/with ambient lighting

In the general case:

Dc(i, j) = Cc
a(i, j) + mb(i, j)C

c
b (i, j) + mi(i, j)C

c
i (i, j) . (8.4)

With the incorporation of the interface reflection term, only property 1 holds after the changes
in the formulation already introduced in case 3. The NIR model is again assumed, together with an
ambient illumination proportional to the directional lighting. The following lemma and proposition
states the aforementioned in a formal way: (See appendix B for the formal proofs as before.)

Lemma 8.9. If ambient illumination is proportional to directional illumination (i.e. La(λ) =
αLd(λ) [α ≥ 0],∀λ) and if the NIR formation model is assumed, for any material and any two
colour channels c1 and c2:

(1) Cc1
a − Cc2

a

Lc1

d

Lc2

d

≥ 0 ⇔ Cc1

b − Cc2

b

Lc1

d

Lc2

d

≥ 0

(2) Cc1
a − Cc2

a

Lc1

d

Lc2

d

≤ 0 ⇔ Cc1

b − Cc2

b

Lc1

d

Lc2

d

≤ 0

where Lc
d = qc

0

∫
Λ

Ld(λ)τ c(λ)s(λ)dλ is the (scaled) radiance of directional illumination for colour
channel c.
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Fig. 8.2. [top,left] A synthetic image without ambient lighting. [bottom,left] Intensity profile for row 64
(in yellow) for every colour channel. [top,right] Body component profiles. [bottom,right] Interface component
profiles.

Proposition 8.10. Assuming directional illumination is uniform throughout the scene and that
ambient illumination is proportional to directional illumination, and assuming the NIR formation
model, for any pair of colour channels c1 and c2, and any two image locations (i1, j1) and (i2, j2)
coming from the same scene material,

(1) Dc1(i1, j1) ≥ Dc2(i1, j1)
Lc1

d

Lc2

d

⇔ Dc1(i2, j2) ≥ Dc2(i2, j2)
Lc1

d

Lc2

d

(2) Dc1(i1, j1) ≤ Dc2(i1, j1)
Lc1

d

Lc2

d

⇔ Dc1(i2, j2) ≤ Dc2(i2, j2)
Lc1

d

Lc2

d

where Lc
d = qc

0

∫
Λ

Ld(λ)τ c(λ)s(λ)dλ is the (scaled) radiance of directional illumination for colour
channel c.

As for properties 2 and 3, the same remarks as for case 3 apply here.

8.3 Usefulness of the Properties

By way of recapitulation of section 8.2, table 8.1 summarizes the dependence of the fulfillment of
properties 1-3 on the particular instantiation of the image formation model. Some conclusions about
the applicability of those properties can be drawn now that the four cases have been revised:

• When the interface reflection term is introduced, only property 1 is satisfied in general within
uniform reflectance areas. This means that false material changes can be detected sometimes inside
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Table 8.1. Fulfillment of properties 1-3 depending on the particular instantiation of the image formation
model.

case properties fulfilled and conditions

(1) matte pixels, no ambient lighting properties 1-3 always

(2) matte pixels, ambient lighting property 2 always; properties 1 and 3 if La(λ) =
αLd(λ), α > 0

(3) glossy pixels, no ambient lighting property 1 under the NIR model and white-balanced
images

(4) glossy pixels, ambient lighting property 1 under the NIR model, white-balanced images
and La(λ) = αLd(λ), α > 0

or near specularities. As it has been discussed before, it depends on whether the sign of m′
b or m′

i

are the same or not, and on which term dominates the value of the derivative: the body/ambient
reflection terms or the interface reflection term. Therefore, not always will specularities give rise
to false material changes.

• Properties 1 and 3 require that La is proportional to Ld in order for them to be applicable when
ambient lighting is not negligible. As was said in section 2.3, the ambient lighting comes, in an
outdoor environment, from the sky through diffraction in the atmosphere, or, in a room, from inter-
reflections on the walls and other objects. Given these facts, it is obvious that some relationship can
be expected between ambient lighting and directional lighting. Unfortunately, no evidence about
the proportionality relationship has been found in the related literature, apart from other authors
also making use of it [227]. However, the experiments performed have shown that, in general,
violations of properties 1 and 3 are closely related with reflectance transitions.

8.4 Cases which Fail to Satisfy the Properties

The following propositions characterize which are the circumstances under which properties 1-3 are
not fulfilled: (As before, formal proofs are given in appendix B.)

Proposition 8.11. Assuming directional illumination is uniform throughout the scene and that
ambient illumination is proportional to directional illumination, and assuming the NIR formation
model, for any pair of colour channels c1 and c2 and any two image locations (i1, j1) and (i2, j2):

(1)
Dc1(i1, j1) > Dc2(i1, j1)

L
c1
d

L
c2
d

Dc1(i2, j2) < Dc2(i2, j2)
L

c1
d

L
c2
d



 ⇔





Cc1

b (i1, j1) > Cc2

b (i1, j1)
L

c1
d

L
c2
d

Cc1

b (i2, j2) < Cc2

b (i2, j2)
L

c1
d

L
c2
d

(2)
Dc1(i1, j1) < Dc2(i1, j1)

L
c1
d

L
c2
d

Dc1(i2, j2) > Dc2(i2, j2)
L

c1
d

L
c2
d



 ⇔





Cc1

b (i1, j1) < Cc2

b (i1, j1)
L

c1
d

L
c2
d

Cc1

b (i2, j2) > Cc2

b (i2, j2)
L

c1
d

L
c2
d

where Lc
d = qc

0

∫
Λ

Ld(λ)τ c(λ)s(λ)dλ is the (scaled) radiance coming from the directional light source
for colour channel c.

Proposition 8.12. Assuming directional illumination is uniform throughout the scene and that
ambient illumination is proportional to directional illumination, for any pair of colour channels c1

and c2 and any two image locations (i1, j1) and (i2, j2) such that Dc
i (i1, j1) = 0 and Dc

i (i2, j2) = 0,
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(1)
Dc1(i1, j1) − Dc1(i2, j2) > 0
Dc2(i1, j1) − Dc2(i2, j2) < 0

}
⇒ Cc2

b (i1, j1)

Cc1

b (i1, j1)
<

Cc2

b (i2, j2)

Cc1

b (i2, j2)

(2)
Dc1(i1, j1) − Dc1(i2, j2) < 0
Dc2(i1, j1) − Dc2(i2, j2) > 0

}
⇒ Cc2

b (i1, j1)

Cc1

b (i1, j1)
>

Cc2

b (i2, j2)

Cc1

b (i2, j2)

Proposition 8.13. Assuming directional illumination is uniform throughout the scene and that
ambient illumination is proportional to directional illumination, for any pair of colour channels c1

and c2 and any two image locations (i1, j1) and (i2, j2) such that Dc
i (i1, j1) = 0 and Dc

i (i2, j2) = 0,

(1)

Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc2(i1, j1) ≥ Dc2(i2, j2)

Dc1(i1, j1) ≥ Dc2(i1, j1) and Dc1(i2, j2) ≥ Dc2(i2, j2)

Dc1(i1, j1) − Dc2(i1, j1) < Dc1(i2, j2) − Dc2(i2, j2)





⇒
{

Cc1

b (i1, j1) > Cc1

b (i2, j2)

Cc2

b (i1, j1) > Cc2

b (i2, j2)

(2)

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc2(i1, j1) ≤ Dc2(i2, j2)

Dc1(i1, j1) ≤ Dc2(i1, j1) and Dc1(i2, j2) ≤ Dc2(i2, j2)

Dc1(i1, j1) − Dc2(i1, j1) < Dc1(i2, j2) − Dc2(i2, j2)





⇒
{

Cc1

b (i1, j1) < Cc1

b (i2, j2)

Cc2

b (i1, j1) < Cc2

b (i2, j2)

(3)

Dc1(i1, j1) ≥ Dc1(i2, j2) and Dc2(i1, j1) ≥ Dc2(i2, j2)

Dc1(i1, j1) ≤ Dc2(i1, j1) and Dc1(i2, j2) ≤ Dc2(i2, j2)

Dc1(i1, j1) − Dc2(i1, j1) > Dc1(i2, j2) − Dc2(i2, j2)





⇒
{

Cc1

b (i1, j1) > Cc1

b (i2, j2)

Cc2

b (i1, j1) > Cc2

b (i2, j2)

(4)

Dc1(i1, j1) ≤ Dc1(i2, j2) and Dc2(i1, j1) ≤ Dc2(i2, j2)

Dc1(i1, j1) ≥ Dc2(i1, j1) and Dc1(i2, j2) ≥ Dc2(i2, j2)

Dc1(i1, j1) − Dc2(i1, j1) > Dc1(i2, j2) − Dc2(i2, j2)





⇒
{

Cc1

b (i1, j1) < Cc1

b (i2, j2)

Cc2

b (i1, j1) < Cc2

b (i2, j2)

These last propositions deserve several observations:

• First of all, notice that every proposition identifies situations for which the composite body re-
flectances corresponding to image locations (i1, j1) and (i2, j2) must necessarily be different due to
failure to fulfill one of properties 1-3. Although the reflectance changes are depicted by means of
the respective composite body reflectances Cc1

b and Cc2

b , they can also be expressed in terms of ρb

as follows. Through the mean value theorem, the composite body reflectance for a certain colour
channel c can be put as a product of two terms:

Cc
b (i, j) = qc

0

∫

Λ

Ld(λ)ρb(i, j;λ)τ c(λ)s(λ) dλ

= ρb(i, j;λ0)

[
qc
0

∫

Λ

Ld(λ)τ c(λ)s(λ)dλ

]
,
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Table 8.2. Reflectance transitions expressed by propositions 8.11-8.13.

proposition reflectance transition

8.11 CHannel Crossing (CHC)

ρc1
b (i1, j1) > ρc2

b (i1, j1)

ρc1
b (i2, j2) < ρc2

b (i2, j2)

ρc1
b (i1, j1) < ρc2

b (i1, j1)

ρc1
b (i2, j2) > ρc2

b (i2, j2)

8.12 Non-Coinciding Derivative (NCD)

ρ
c2
b

(i1,j1)

ρ
c1
b

(i1,j1)
<

ρ
c2
b

(i2,j2)

ρ
c1
b

(i2,j2)

ρ
c2
b

(i1,j1)

ρ
c1
b

(i1,j1)
>

ρ
c2
b

(i2,j2)

ρ
c1
b

(i2,j2)

8.13 Non-Decreasing Difference (NDD)

ρc1
b (i1, j1) > ρc1

b (i2, j2)

ρc2
b (i1, j1) > ρc2

b (i2, j2)

ρc1
b (i1, j1) < ρc1

b (i2, j2)

ρc2
b (i1, j1) < ρc2

b (i2, j2)

for some λ0 ∈ Λ. Therefore, if ρc
b(i, j) = ρb(i, j;λ0) is defined for every colour channel and image

location2, then the three propositions correspond to the reflectance transitions enumerated in
table 8.2. (The relationships between ρc

b’s which are given are immediate from the proofs of the
corresponding propositions.)

• Regarding proposition 8.11, cases (1) and (2) of its enunciate provide the only two ways to fail to
fulfill property1: the order between two colour channels intensity is reversed from location (i1, j1)
to location (i2, j2). If those location happen to be adjacent to one another, then a reflectance
transition of the type indicated in table 8.2 necessarily exists between (i1, j1) and (i2, j2), which
materializes as a colour channel crossing in-between both image locations.
Besides, observe that the proposition is written as a double implication. In order to illustrate this
fact, let us consider, by way of example, case (1) of the proposition. In this case, channel c1 is
“above” channel c2 at (i1, j1) (i.e. the intensity in channel c1 is larger than the intensity in channel
c2), while at (i2, j2) is just the opposite. The proposition says that, provided that the hypotheses
hold, this order relationship takes place if and only if the same relationship holds between the
corresponding composite reflectances. Both facts are thus equivalent.
Finally, another version of proposition 8.11 which does not need estimates for Lc

d nor the NIR model,
at the expense of not tolerating specularities, can be found below in the form of proposition 8.14:
(As before, the proof is in appendix B.)

Proposition 8.14. Assuming directional illumination is uniform throughout the scene and that
ambient illumination is proportional to directional illumination, for any pair of colour channels c1

and c2 and any two image locations (i1, j1) and (i2, j2) such that Dc
i (i1, j1) = 0 and Dc

i (i2, j2) = 0,

2 Observe that ρc
b(i, j) = ρb(i, j; λ0) is the same for every (i, j) corresponding to the same scene material,

provided that the illumination is uniform throughout the scene. Therefore, it is in fact a property of the
material, although just for that particular scene. In effect, contrary to what can seem at first sight, ρc

b(i, j)
is not really illumination-independent since, in fact:

ρc
b(i, j) =

∫
Λ

Ld(λ)ρb(i, j; λ)τ c(λ)s(λ) dλ∫
Λ

Ld(λ)τ c(λ)s(λ)dλ
(8.5)
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c 2

c 1

( i 1 , j 1 ) ( i 2 , j 2 )

Fig. 8.3. A case where possibly
C

c2
b

(i1,j1)

C
c1
b

(i1,j1)
<

C
c2
b

(i2,j2)

C
c1
b

(i2,j2)
, but Dc1(i1, j1) − Dc1(i2, j2) < 0 and Dc2(i1, j1) −

Dc2(i2, j2) < 0.

c 2

c 1

( i 1 , j 1 ) ( i 2 , j 2 )

Fig. 8.4. A CHC and an NCD transition taking place simultaneously.

(1)
Dc1(i1, j1) > Dc2(i1, j1)
Dc1(i2, j2) < Dc2(i2, j2)

}
⇔

{
Cc1

b (i1, j1) > Cc2

b (i1, j1)
Cc1

b (i2, j2) < Cc2

b (i2, j2)

(2)
Dc1(i1, j1) < Dc2(i1, j1)
Dc1(i2, j2) > Dc2(i2, j2)

}
⇔

{
Cc1

b (i1, j1) < Cc2

b (i1, j1)
Cc1

b (i2, j2) > Cc2

b (i2, j2)

• Proposition 8.12 provides the conditions which characterize a reflectance transition for which at
least two channels are forced to evolve without coordination; that is to say, when the intensity in
one increases, in the other one decreases (transition of type non-coinciding derivative or NCD).
Analogously to proposition 8.11, the cases enumerated in proposition 8.12 correspond to the two
ways how property 2 can be unsatisfied.
On the other hand, notice that the formulation of proposition 8.12 does not make use of a derivative-
like notation, unlike the corresponding property 2, but utilizes a notation based on two points
(i1, j1) and (i2, j2) like the other two propositions. This is to elude the problem of the non-existence
of intensity derivatives at reflectance transition locations.
Observe that the proposition is written as a single implication. This is because the relationships
between composite body reflectances expressed through the consequent of the proposition apply
also to other cases where the colour channels do evolve in a coordinated way (see figure 8.3 for an
illustration of this point). Therefore, both facts are not equivalent.
Finally, notice that there is a certain degree of overlapping between CHC and NCD transitions.
By way of example, observe in figure 8.4 that every channel crossing implies two colour channels
evolving without coordination during the reflectance transition. In case it was necessary to avoid
the overlapping, an additional condition should be added to the two cases of proposition 8.12:
Dc1(i1, j1) − Dc2(i1, j1) ≥ 0 and Dc1(i2, j2) − Dc2(i2, j2) ≥ 0, or Dc1(i1, j1) − Dc2(i1, j1) ≤ 0 and
Dc1(i2, j2) − Dc2(i2, j2) ≤ 0.

• In the third place, proposition 8.13 characterizes a reflectance transition during which property 3
does not hold. Therefore, for at least two channels, the difference between their intensities does
not decrease as the intensity in both decreases (transition of type non-decreasing difference or
NDD). As it can be seen, the formulation of proposition 8.13 is a bit special in the sense that the
conditions that constitute the antecedents of the different implications include more terms than
the conditions appearing in the formulation of property 3. This is because they are needed in the
proof, although they also avoid a certain degree of overlapping between propositions 8.11/8.12
and proposition 8.13. In effect, by way of example, in case (1) of proposition 8.13, Dc1(i1, j1) ≥
Dc1(i2, j2) and Dc2(i1, j1) ≥ Dc2(i2, j2) are both needed simultaneously because, if they were not
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c 2

c 1

( i 1 , j 1 ) ( i 2 , j 2 )

Fig. 8.5. A case where possibly Cc1
b (i1, j1) > Cc1

b (i2, j2) and Cc2
b (i1, j1) > Cc2

b (i2, j2), but Dc1(i1, j1) ≥
Dc1(i2, j2), Dc2(i1, j1) ≥ Dc2(i2, j2), Dc1(i1, j1) ≥ Dc2(i1, j1), Dc1(i2, j2) ≥ Dc2(i2, j2), and Dc1(i1, j1) −
Dc2(i1, j1) ≥ Dc1(i2, j2) − Dc2(i2, j2).

fulfilled at the same time, colour channels c1 and c2 would not evolve coordinately, and a transition
of type NCD would have been found. Analogously, Dc1(i1, j1) ≥ Dc2(i1, j1) and Dc1(i2, j2) ≥
Dc2(i2, j2) are also necessary in order to ensure a transition of type CHC is not taking place. These
two extra conditions do not appear in the formulation of property 3 because, as for every property
both pixels (i1, j1) and (i2, j2) are assumed to have a common reflectance, Dc1(i1, j1) ≥ Dc1(i2, j2)
implies Dc1(i1, j1) ≥ Dc1(i2, j2) (property 2) and Dc1(i1, j1) ≥ Dc2(i1, j1) implies Dc1(i2, j2) ≥
Dc2(i2, j2) (property 1).
Finally, proposition 8.13 is not a double implication because, as in the case of proposition 8.12,
the sort of reflectance transitions which are consequence of the conditions stated in the proposition
can also arise due to other circumstances (see figure 8.5 for an illustration).

8.5 Formulation of a Compatibility Relationship between Pixels

Properties 1-3 can be said to lead to a set of necessary compatibility conditions between pixels, in the
sense that if two pixels fail to satisfy any of the three properties for any of the two-by-two combinations
between colour channels, then both pixels cannot correspond to the same scene material. In this section,
all three compatibility conditions will be unified in a single compatibility relationship between image
pixels by means of their geometric interpretation.

In effect, given a certain combination of colour channels, say c1 and c2, and two pairs, p and q, of
intensity values, (Dc1

p ,Dc2
p ) and (Dc1

q ,Dc2
q ), all three properties can be stated geometrically considering

the space of intensity values taken by both channels:

• (Dc1
p ,Dc2

p ), with Dc1
p ≥ Dc2

p , and (Dc1
q ,Dc2

q ) satisfy property 1 if and only if Dc1
q ≥ Dc2

q . This is
expressed in figure 8.6(a) as the shaded area below the straight line Dc1 = Dc2 . In case Dc1

p ≤ Dc2
p ,

the same order relationship must take place in the pair (Dc1
q ,Dc2

q ) for them to be compatible in the
sense of property 1. This corresponds to the complement of the shaded area in figure 8.6(a). Notice
that if Dc1

p = Dc2
p , any combination of intensity values for channels c1 and c2 is compatible with

(Dc1
p ,Dc2

p ). This agrees with the aim of developing a set of necessary compatibility conditions, since,
in this particular case, the pair (Dc1

p ,Dc2
p ) does not provide any clue about the order relationship

between colour channels for the corresponding material, and therefore no reflectance transition
should be suspected whatever (Dc1

q ,Dc2
q ) could be.

• (Dc1
p ,Dc2

p ) and (Dc1
q ,Dc2

q ) satisfy property 2 if intensity varies in the same sense for both channels
from a to b: it increases in both, Dc1

p − Dc1
q ≥ 0 and Dc2

p − Dc2
q ≥ 0, or it decreases in both,

Dc1
p −Dc1

q ≤ 0 and Dc2
p −Dc2

q ≤ 0. In figure 8.6(b), the shaded area include all the pairs (Dc1
q ,Dc2

q )
which verify these conditions for (Dc1

p ,Dc2
p ) fixed. Observe that, in this case, the compatibility zone

has nothing to do with the order relationship between colour channels.
• Finally, (Dc1

p ,Dc2
p ), with Dc1

p ≥ Dc2
p , and (Dc1

q ,Dc2
q ) are such that an increase in intensity in

one channel corresponds to an increase in the difference between colour channels, or, inversely, a
decrease in intensity corresponds to a decrease in the difference (property 3) if:
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Fig. 8.6. Geometrical interpretation of properties 1-3. (In the figures, Dn
k is an abbreviation of Dcn

k .)

(i) Dc1
q −Dc2

q ≥ Dc1
p −Dc2

p when Dc1
q ≥ Dc1

p and Dc2
q ≥ Dc2

p (upper right shaded area of figure 8.6(c)),
or

(ii) Dc1
q −Dc2

q ≤ Dc1
p −Dc2

p when Dc1
q ≤ Dc1

p and Dc2
q ≤ Dc2

p (lower left shaded area of figure 8.6(c)),
or

(iii) Dc1
q −Dc2

q ≤ Dc1
p −Dc2

p when Dc1
q ≤ Dc1

p and Dc2
q ≥ Dc2

p (upper left shaded area of figure 8.6(c)),
or

(iv) Dc1
q −Dc2

q ≥ Dc1
p −Dc2

p when Dc1
q ≥ Dc1

p and Dc2
q ≤ Dc2

p (lower right shaded area of figure 8.6(c)).

As well as for property 1, in case Dc1
p ≤ Dc2

p , the compatibility area is the complement of the
shaded area of figure 8.6(c). For instance, if Dc1

q ≥ Dc1
p and Dc2

q ≥ Dc2
p , property 3 holds if

Dc2
q −Dc1

q ≥ Dc2
p −Dc1

p (upper right non-shaded area of figure 8.6(c)). When Dc1
p = Dc2

p , as before,
the compatibility area is the whole space of values taken by channels c1 and c2.
To finish, observe that, contrary to the original formulation of property 3, this geometrical inter-
pretation does not take into account properties 1 and 2. In fact, notice that cases (iii) and (iv)
above violate property 2.

To finish, figure 8.6(d) shows the compatible area for all three properties simultaneously (triangles
correspond to the case Dc1

p ≤ Dc2
p , while circles are for case Dc1

p ≥ Dc2
p ). In view of these graphs, a

compatibility relation C can be summarized as:

(Dc1
q ,Dc2

q ) is C-compatible with (Dc1
p ,Dc2

p ) if:

(i) when Dc1
p ≥ Dc2

p , the orientation of the vector joining both lies within [0◦, 45◦]; and

(ii) when Dc1
p ≤ Dc2

p , the orientation of the vector joining both lies within [45◦, 90◦].



8.6 Coverage of Reflectance Transitions 195
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( c )
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( d )

( i 1 , j 1 ) ( i 2 , j 2 )

Fig. 8.7. Summary of how the body reflectance transitions dectected manifest and corresponding edges: (a)
CHC edge; (b) NCD edge; (c) NDD edge; (d) GRD edge.

This formulation of C assumes that the origin of the vector joining (Dc1
p ,Dc2

p ) and (Dc1
q ,Dc2

q ) is chosen
so that its orientation lies between −90◦ and 90◦ (see figure 8.6(e) for the angle convention).

8.6 Coverage of Reflectance Transitions

The compatibility relationship C formulated above covers a broad spectrum of body reflectance changes.
On the one hand, if property 1 is infringed, it is because at least one colour channel crosses one another.
Otherwise, at that image pixel, colour channels do not cross one another, but, still, property 2 can be
violated. In such a case, at least two colour channels diverge in the sense that, while in one channel
the intensity increases, at the other one decreases. In case the intensity at all colour channels vary in
a coordinated way —all increase or all decrease—, it can so happen that property 3 is not fulfilled;
that is to say, when intensity decreases in both channels, the difference between them increases instead
of decreasing, or vice versa. Figures 8.7(a)-(c) summarize graphically these three types of reflectance
transitions.

By way of example, CHC reflectance transitions (see table 8.2) comprise, from a theoretical point of
view, the 83.33 % of all possible transitions (see appendix C for the derivation of this percentage).What
is most important from the previous fact is that C can be used to detect such an amount of reflectance
transitions without resorting to explicitly computing the reflectance of the underlying surface.

However, unfortunately, there exist some reflectance transitions such that none of the cases of
propositions 8.11-8.14 is fulfilled despite a reflectance change is arising there. These reflectance changes
make manifest such as if the pixels involved corresponded all to the same scene material in the sense
of not violating any of properties 1-3. Figures 8.3 and 8.5 are examples of this sort of reflectance
transitions.

To investigate further this point, let us consider the situation of figure 8.3. In this case, the intensity
increases in both channels, channel c2 is “above” channel c1 and the difference between c2 and c1

increases:

Dc1(i1, j1) < Dc1(i2, j2)

Dc2(i1, j1) < Dc2(i2, j2)

Dc2(i1, j1) > Dc1(i1, j1)

⇒ Dc2(i1, j1) − Dc1(i1, j1) = (α + mb(i1, j1)) (Cc2

b (i1, j1) − Cc1

b (i1, j1)) > 0
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( a ) ( b )

Fig. 8.8. Second-order derivative output for a step edge (a) and a ramp edge (b).

Dc2(i2, j2) > Dc1(i2, j2)

⇒ Dc2(i2, j2) − Dc1(i2, j2) = (α + mb(i2, j2)) (Cc2

b (i2, j2) − Cc1

b (i2, j2)) > 0

Dc2(i1, j1) − Dc1(i1, j1) < Dc2(i2, j2) − Dc1(i2, j2)

⇒ (α + mb(i1, j1)) (Cc2

b (i1, j1) − Cc1

b (i1, j1))︸ ︷︷ ︸
>0

< (α + mb(i2, j2)) (Cc2

b (i2, j2) − Cc1

b (i2, j2))︸ ︷︷ ︸
>0

Observe that this last inequality can be satisfied under, among others, the two following sets of cir-
cumstances:

• mb(i1, j1) = mb(i2, j2) and Cc2

b (i1, j1) − Cc1

b (i1, j1) < Cc2

b (i2, j2) − Cc1

b (i2, j2), which means the
changes in intensity Dc1(i1, j1) − Dc1(i2, j2) and Dc2(i1, j1) − Dc2(i2, j2) are due to a change in
reflectance; or

• mb(i1, j1) < mb(i2, j2), Cc2

b (i1, j1) = Cc2

b (i2, j2) and Cc1

b (i1, j1) = Cc1

b (i2, j2), which means the
changes in intensity Dc1(i1, j1) − Dc1(i2, j2) and Dc2(i1, j1) − Dc2(i2, j2) are due to a change in
the surface normal vectors between (i1, j1) and (i2, j2) because of the curvature of the surface.

Consequently, in this case, contrary to the situations depicted through propositions 8.11-8.14, there
is no way to decide whether there is a change in reflectance or merely a change in mb, and, thus, an
ambiguity results. In other words, the interrelation between colour channels is not powerful enough
in this case so as to disambiguate the source of the intensity variation. Notice that the analysis of
images made so far is located at the signal level and, thus, the ambiguity lies at this level. Accordingly,
information coming from the application domain level or from other sensor, if available, should be used
to make the decision. For instance, if objects with smooth surfaces are expected in the scene, gradient
information can result practical to locate the remaining reflectance transitions, which will be called
GRD reflectance transitions from now on (see figure 8.7(d)).

In particular, second-order derivative operators are of common use for edge detection in piecewise
constant images. On those cases, the idealized step/ramp edges give rise to a zero crossing at the
edge because of the sudden change in the first-order derivative, which in turn makes the second-order
derivative change its sign in order to return to a situation of nearly zero gradient (see figure 8.8). In
general images (i.e. in images not necessarily consisting of a collection of tableaus), a more general
analysis must be performed since other edges apart from the step/ramp edge appear.

To illustrate this point, consider the middle plot of figure 8.9, which shows the intensity profiles of
row 60 of the uppermost synthetic image. As can be appreciated, the profiles are no longer piecewise
constant but rather piecewise curved. Accordingly, for this sort of images, the output of a second-order
derivative operator will be negative at places where the intensity is convex, while, at concave places, the
output will be positive, as can be observed in the lower plot of figure 8.9. Inflection points take place
at locations where the profiles change from being convex-shaped to be concave-shaped or vice versa.
Although the inflection can happen in uniform reflectance areas as a consequence of the properties of
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Fig. 8.9. Relationship between LOG zero crossings and reflectance transitions: [upper plot] intensity profiles
for RGB colour channels, for row 60 (in yellow) of uppermost image (shadowed areas correspond to reflectance
transition locations); [lower plot] result of convolving the upper profiles with LOG (σ = 1).

the corresponding scene surface, it particularly occurs at reflectance transitions, as it can be observed
in figure 8.9. For instance, consider the left darkened area of the lower plot of figure 8.9 and the red
profile. From left to right, the profile changes from being constant to be concave-shaped in the darkened
area, and next convex-shaped past the darkened area. As a result, two zero crossings result, although
only one of them is supported by a physical cause. A double response is thus produced, although of a
different magnitude (i.e. the difference between the negative and the positive peaks in the LOG output)
in each case. Another illustration between the relationship between reflectance transitions and LOG
zero crossings can be found in the lower plot of figure 8.10.
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8.7 Colour Channel Coupling-based Edge Detection (C3E)

As has been shown in the preceding sections, the analysis of the coupling between colour channels allows
locating reflectance transitions in the image. Therefore, an edge map can be built as this analysis is
performed over the image, where every edge corresponds to a pixel involved in a reflectance change.
As has been shown before, a small amount of reflectance transitions cannot be covered by means of
colour channel coupling analysis, so that, in order to obtain a complete edge map, it is necessary to
complement the previous analysis with additional means. In particular, a strategy based on locating
LOG zero-crossings has been suggested, given the properties of second-order derivative operators when
they are applied in general images. The rest of this section discusses the details of C3E, the resulting
final edge detection method.

8.7.1 Edge map computation

The edge map is built by checking, at every pixel, all three properties, as well as whether the pixel is
involved in a LOG zero-crossing. To this end, a pixel (i1, j1) is considered an edge if:

1. for any of its 8 neighbours (i2, j2) and at least one combination of colour channels, both pixels are
not compatible with one another in the sense of the relation C formulated in section 8.5; or

2. for any of its 8 neighbours (i2, j2) and at least one colour channel, the sign of LOG changes between
(i1, j1) and (i2, j2), and (i1, j1) shows the LOG value closest to 0.

As a result of this process, four types of edges can be found in the edge map, each one related with
one type of reflectance transition: CHC edge, NCD edge, NDD edge and GRD edge. They are all
summarized in figure 8.7.

As mentioned before, when a reflectance change takes place, let us say along direction ξ, colour
channels evolve in that direction so as to adopt the configuration corresponding to the new body
reflectance. In a synthetic image, this evolution takes place between the two pixels which are adjacent
over direction ξ, coming each one from a different scene material, so that the reflectance transition does
not involve, in fact, any pixel. In a real image, however, a transition can comprise several pixels due
to the round-off caused by aliasing in real cameras. By way of example, the upper plot of figure 8.10
illustrates this point. The plot corresponds to the RGB intensity profiles of row 50 of the real image
shown at the top of the figure. The darkened areas approximately enclose the pixels involved in the
different reflectance transitions taking place (in this case, all happen to make manifest in the form of
crossings between colour channels). Observe that, during the transitions, it can be said, in a certain
sense, that the reflectance of those pixels turns out to be undefined. Therefore, the most appropriate
thing to do on these situations is to consider all of them as edges, so that thick edges must be expected
in the edge map.

To finish, notice that, although not always will specularities cause CHC/NCD/NDD edges, as it
has been discussed before, they will do induce edges of type GRD, except for “smooth” specularities.

8.7.2 Implementation issues

In order to counteract image noise in an adaptive way when computing the edge map, the intensity
uncertainties computed in chapter 6 are incorporated into the edge detection strategy. Therefore, for
every colour channel k, every digital noisy level Dk produced by the camera is associated to an interval
[Dk − δ(Dk),Dk + δ(Dk)]. With the introduction of these uncertainties, either C and the strategy for
locating LOG zero-crossings are redefined:

• With regard to C, given (D1
p,D2

p), a rectangular uncertainty area around (D1
p,D2

p) covering t1 uncer-
tainties is defined, as it is depicted in figure 8.11. C is reformulated then as: (D1

q ,D2
q) is C-compatible

with (D1
p,D2

p) if any of the points belonging to the uncertainty area of (D1
q ,D2

q) falls within the
union of the compatibility zones of the points belonging to the uncertainty area of (D1

p,D2
p) (shaded

area of figure 8.11). The incompatibility between (D1
p,D2

p) and (D1
q ,D2

q) stems, thus, from the fact
that a very low probability exists that any pair of intensity levels which could lead, through noise,
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Fig. 8.10. Examples of reflectance transitions in a real image: [upper plot] intensity profiles for RGB colour
channels, for row 50 (in yellow) of uppermost image (shadowed areas correspond to reflectance transition
locations); [lower plot] result of convolving the upper profiles with LOG (σ = 1).
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Fig. 8.11. Redefinition of the C compatibility relation. (The uncertainty areas have been magnified for illus-
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Fig. 8.12. Example of edge map (I): [top,left] original image; [top,right] final edge map; [bottom,left]
CHC/NCD/NDD edges (t1 = 3); [bottom,right] GRD edges (t2 = 3).

to (D1
p,D2

p) was compatible, in the sense of properties 1-3, with any pair of intensity levels leading,
through noise, to (D1

q ,D2
q).

• As for LOG zero-crossings, the UTLOG strategy described in section 6.4.4 is adopted here. That is
to say, whenever a zero-crossing is detected, it is deemed relevant if the positive and negative peak
LOG values along the direction of detection are larger than t2 times the respective uncertainties
(see figure 6.9(a)). Remember that those uncertainties are computed using standard uncertainty
propagation rules, by which, if the output of the LOG operator is calculated as f =

∑
x Dcm(x),

where m(x) are the LOG mask constants, then [272]:

δ(f) =

√∑

x

δ(Dc(x))2m2(x) (8.6)

8.7.3 Examples of edge maps and discussion

Figure 8.12 shows the partial and final edge maps for the image shown in the upper left corner. As
can be observed, GRD edges tend to be found near specularities and also associated with the edges
of scene objects or with shadows (see the candle and the cup, for instance), while CHC/NCD/NDD
edges can have a considerable thickness (e.g. the candle). On the other hand, some spurious edges of
type CHC/NCD/NDD appear when the corresponding reflectance transitions are similar to the ones
shown in figures 8.3 and 8.5 (e.g. the borders between dark green and white zones inside the flowerpot).
Otherwise, complete contours result between the regions involved (see the contours between the blue
paper sheet and its neighbouring regions). Observe that both t1 and t2 have been set to 3. Finally, the
combined edge map shown in figure 8.12(top,right) already reveals a certain degree of overdetection.
For instance, observe the rim of the cup, a uniform reflectance area which results split in several pieces
due to some false positive edges which sometimes proliferate until constituting a closed contour.

From the previous example and the plots shown in figures 8.9 and 8.10, it can be easily deduced
that there can be an important degree of overlapping between GRD edges and CHC/NCD/NDD edges,
what raises the question whether a classical feature such as LOG zero-crossings would be enough to
locate reflectance transitions, and, consequently, build the edge map without detecting the colour edges.
Certainly, the main reason for this coincidence is that reflectance transitions tend to produce abrupt
changes in intensity and therefore LOG zero crossings. However, it is important not to forget that
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Fig. 8.13. Example of edge map (II): [top,left] original image; [top,right] final edge map; [bottom,left]
CHC/NCD/NDD edges (t1 = 3); [bottom,right] GRD edges (t2 = 3).

CHC/NCD/NDD edges correspond to situations in the signal by which a reflectance transition (i.e.
the physical cause) manifest, while LOG responds to variations in intensity related with changes in the
concavity/convexity of the image surface. Consequently, it can so happen that, existing a clear evidence
of a CHC/NCD/NDD edge, the sensitivity of the LOG operator, controlled by the σ parameter, is not
sufficient to catch the corresponding change in intensity. Figure 8.13 illustrates this point. As can be
observed, neither the map of colour edges alone or the map of GRD edges alone contain all the edges.
The combination of both, however, yields a map where very few edges are missed.

8.8 Edge Thinning Strategy

As has been discussed and shown in previous sections, the edge map produced by the algorithm of
section 8.7 tends to contain thick edges mainly because reflectance transitions in real images span
several pixels along the edge direction. This section proposes an edge thinning strategy just in case
this edge detection algorithm is used within a vision system such that the next procedure along the
vision pipeline requires thin edges.

Non-maximum suppression is a simple and widely used method for edge thinning [25]. It deletes
all edge responses that are not maximal in each cross section of the edge direction in their local
neighbourhood. However, this procedure can remove real edges and, sometimes, alter the topological
characteristics of the original edge map. A method directed by gradient magnitude which preserves edge
connectivity is proposed next for the edge detector presented in section 8.7. Unfortunately, experimental
results have shown unit thickness is not always achieved. In case this property is essential, it is suggested
to compute the skeleton of the pre-thinned edge map. Good results have been obtained by means of
the morphological method described in [136].

First of all, connected components of the edge map not including edges are found. Next, edges
adjacent to these connected components are inserted in a heap so that, when pulled out, edges are
visited in increasing order of gradient. Whenever an edge is visited, all its non-visited neighbouring



202 Analysis of Colour Channels Coupling

(a) (b) (c)

Fig. 8.14. Example of thinning: (a) edge map (t = 3 for both colour and GRD edges); (b) thinned edge map;
(c) final edge map after the morphological thinning of (b).

edges are in turn introduced in the heap according to their own gradient. Besides, if an edge happens
to be in the middle of two already visited edges along the gradient direction, the edge is labeled as a
final edge; otherwise it is added to the connected component to which it was adjacent. Therefore, it is
the gradient what is used to choose the representative of a set of edges found along a given direction
because of a reflectance transition arising there.

In a second stage, once all the edge pixels have been assigned to a connected component and some
of them have already been labeled as final edges, those in the borders between different components are
also considered to be final edges. For every pair of adjacent candidates, if none of them were selected
as final edge in the first stage, the one having largest gradient is selected now.

During this process, if a connected component happen to comprise a reduced amount of pixels, the
connected component is removed and its pixels are added to the heap and then pulled out in increasing
order of gradient. In this way, some spurious edges which appear due to, above all, the thickness of
CHC/NCD/NDD edges are avoided.

Figure 8.14 shows the output of the thinning stage for the image appearing in figure 8.12.

8.9 Experimental Results

To prove experimentally the usefulness of C3E, several results for synthetic and real images are pro-
vided. Furthermore, C3E is extensively compared with the physics-based edge detection algorithm by
Stokman and Gevers [79, 262] (S&G from now on). Results for the non-physics-based algorithm by
Meer and Georgescu published in [168]3 (M&G from now on) are also shown.

As for parameters:

• In the case of C3E, the only relevant parameters are the number of uncertainties to be used when
detecting CHC/NCD/NDD edges, t1, and the number of uncertainties associated to GRD edges,
t2. However, since the same value can be given to both, an only parameter results, which will be
referenced as t. The value given to t in every experiment is indicated in each case.
On the other hand, the value of the standard deviation for the LOG operator, σLOG used for
detecting GRD edges was all the time set to 1.0. The size of the LOG mask was then determined
as 2 × ⌈3σLOG⌉ + 1.
Additionally, in accordance with the post-processing stage of the segmentation/edge detection
framework proposed in section 4.4 (figures 4.2 and 4.7):
– connected sets of edges with a size below 10 pixels are removed, and
– the connected components of non-edge pixels employed during the thinning step (section 8.8)

are required to have a size above 50 pixels; otherwise, the corresponding pixels are inserted into
the heap to join another connected component.

• Referring to S&G, it is a parameter-free algorithm which also uses intensity uncertainties to find
local thresholds, so that no parameters needs to be set up. Besides, non-maxima suppression is
used to thin the corresponding edge maps (as proposed by the authors) in order to have all the
edge maps thinned throughout the algorithms comparison.

3 The code is publicly available at http://www.caip.rutgers.edu/riul/research/code.html
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• Finally, regarding M&G, the parameters set by default by the application they offer in their web
page are used.

8.9.1 Experiments with synthetic images

In the experiments with synthetic images, C3E was faced against two sets of 100 synthetic noisy images.
Unless explicitly stated below when describing the particular experiment, both sets corresponded to
normal noise conditions; that is to say, the noise was added, as on other occasions, according to the
camera noise parameters estimated in section 6.4.1 following pseudocode 6.3. On the other hand, while
one set consisted of scenes involving spheres and planes of different reflectances, the scenes of the
other set only contained planes, in order to see if there were differences in performance depending on
whether the scenes included or not curved objects. As for parameters, in all cases, the same number
of uncertainties (t) was used for both detecting CHC/NCD/NDD edges and for GRD edges.

As a first experiment, and given the comments on edge detection performance evaluation expressed
in section 4.4.2, Baddeley’s performance measure (see table 4.8) was evaluated for C3E, varying the
number of uncertainties t used to compute the edge map. Figure 8.15 shows the results. As can be
observed and could be easily guessed, the performance of C3E varies with the number of uncertainties
used; moreover, there is a value of t for which maximum performance is attained for both sets of images.
More precisely, such performance is obtained for t = 5, although very similar values were obtained for
values of t around 5. Clearly, this behaviour agrees with the statistical meaning of t: for low values
of t a lot of false positives are generated, while, for large values, an increasing number of true edges
are not detected (false negatives). As a result of this experiment and given the statistical meaning of
t (see section 6.2.2), it seems that t = 3..6 is an adequate selection of values which should work on
most occasions. In particular, t = 6 allows detecting edges corresponding to intensity variations whose
probability of being due to noise is below 1/36 = 2.78 %, while for t = 3 this value rises up to 1/9 =
11.11 %.

In the second experiment, C3E and S&G were compared under normal noise conditions. According
to the previous considerations about the values to be given to t, three values for t were considered:
3, 4 and 5. Furthermore, the four evaluation measures appearing in table 4.8 were computed in order
not to make the comparison dependent on a particular evaluation measure. The numerical results
appear in the tables of figure 8.16. As can be observed, Baddeley’s measure indicates C3E edge maps
are better than the ones by S&G, while FOM and D measures are quite similar for both algorithms,
irrespective of the value given to t. The source of this discrepancy is likely to lay in what was pointed
out in section 4.4.2 regarding the lack of sensitiveness to false edge positives in FOM’s case; as for
the discrepancy percentage D, it should be taken into account that the location of misclassified pixels
is not considered by this measure. On the other hand, the interval of Baddeley’s measures obtained
for S&G contains that of C3E, which means that for some images S&G produced better edge maps
than C3E. However, at the same time, the larger interval length indicates a bigger instability in the
results of S&G, which is corroborated by a larger standard deviation. All the aforementioned can also
be observed graphically in the plots of figure 8.16 for t = 4.

As a final experiment, increasingly amplitude noise was added to both sets of synthetic images
in order to observe the capability of adaptation to different levels of noise of C3E and S&G. To this
end, new noise models were generated multiplying by a scalar k the standard deviations corresponding
to the noise sources (i.e. σK , σdc and σc

f , in equation 6.11b of section 6.2.2), as was already done in
the experimental results section of chapter 7. Accordingly, the intensity uncertainties used by both
algorithms were recalculated for each level. k = 1..5 were the levels of noise considered, where k = 1
means normal noise conditions. In order to illustrate the amount of noise added, figure 8.17 reproduces
again some synthetic images for all levels.

Figure 8.18 shows Baddeley’s results for this last experiment and t = 3..5. Once more, C3E gets
better scorings than S&G and, besides, C3E shows a stronger tolerance to noise, performing similarly
as under normal noise conditions up to k = 3. From there on (i.e. k = 4 and 5), a slight trend
towards worse edge maps can be observed in C3E, which is quite reasonable given the amount of noise
introduced. Finally, it is specially notorious the fact that, as noise increases, C3E behaves better for
t = 3 against t = 4..5.
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(a)

t → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

avg 1.69 0.71 0.34 0.26 0.25 0.26 0.27 0.29 0.31 0.35 0.37 0.40 0.44 0.48 0.52

std 0.25 0.13 0.10 0.07 0.07 0.08 0.08 0.10 0.12 0.15 0.17 0.18 0.19 0.20 0.21

min 1.25 0.37 0.14 0.11 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.13 0.15

max 2.72 1.00 0.63 0.41 0.42 0.53 0.55 0.61 0.94 1.18 1.19 1.19 1.19 1.20 1.21
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(d)

t → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

avg 1.84 0.21 0.20 0.19 0.19 0.19 0.19 0.20 0.22 0.25 0.29 0.32 0.35 0.40 0.45

std 0.44 0.08 0.07 0.08 0.09 0.10 0.12 0.15 0.17 0.19 0.22 0.24 0.26 0.30 0.31

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

max 2.78 0.36 0.34 0.48 0.56 0.56 0.76 0.76 0.77 0.77 0.84 0.97 1.05 1.16 1.16
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Fig. 8.15. Experimental results (Baddeley’s measure) for C3E and noisy synthetic images: (a), (b) and (c) are
for the spheres and planes set, while (d), (e) and (f) are for the only-planes set; (a,d) average (avg), standard
deviation (std), minimum (min) and maximum (max) for t = 1..15; (b,e) plot of average values and standard
deviations for t = 1..15; (c,f) histograms of Baddeley’s measures for t = 1..15.
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(a)

C3E
S&G

t = 3 t = 4 t = 5

FOM(1/9) 0.96 - 0.03 [0.76,0.99] 0.95 - 0.05 [0.73,0.99] 0.93 - 0.06 [0.72,0.99] 0.96 - 0.03 [0.85,1.00]

FOM(1) 0.90 - 0.04 [0.73,0.97] 0.91 - 0.05 [0.71,0.98] 0.90 - 0.06 [0.70,0.98] 0.91 - 0.06 [0.76,0.99]

D×100 1.64 - 0.67 [0.35,3.45] 1.26 - 0.49 [0.28,2.60] 1.21 - 0.45 [0.29,2.31] 1.37 - 0.76 [0.15,3.46]

Baddeley 0.34 - 0.10 [0.14,0.63] 0.26 - 0.07 [0.11,0.41] 0.25 - 0.07 [0.09,0.42] 0.48 - 0.24 [0.07,1.23]

(b)
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(c)

C3E
S&G

t = 3 t = 4 t = 5

FOM(1/9) 0.98 - 0.01 [0.94,1.00] 0.98 - 0.02 [0.90,1.00] 0.98 - 0.02 [0.89,1.00] 0.96 - 0.05 [0.75,1.00]

FOM(1) 0.96 - 0.02 [0.88,1.00] 0.96 - 0.02 [0.89,1.00] 0.97 - 0.02 [0.87,1.00] 0.96 - 0.05 [0.75,1.00]

D×100 0.62 - 0.40 [0.00,2.26] 0.57 - 0.39 [0.00,2.09] 0.55 - 0.37 [0.00,1.93] 0.32 - 0.42 [0.00,2.25]

Baddeley 0.20 - 0.07 [0.00,0.34] 0.19 - 0.08 [0.00,0.48] 0.19 - 0.09 [0.00,0.56] 0.29 - 0.24 [0.00,1.18]

(d)
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Fig. 8.16. Comparison between C3E and S&G under normal noise conditions by means of synthetic images:
(a) and (b) are for the spheres and planes set, while (c) and (d) are for the only-planes set; (a,c) every entry of
the tables consists of average - standard deviation [minimum,maximum]; (b,d) plots of average and standard
deviation values for t = 4.

8.9.2 Experiments with real images

This section presents experimental results for C3E over a varied set of real images including images
typically used for testing edge detection algorithms, i.e. standard images, and also “proprietary” images
taken under the conditions outlined in section 4.4.1. As in the previous section, comparison results are
also provided. On this occasion, performance measurements for both S&G and M&G are given.

On the one hand, quantitative results have been obtained on the basis of the six images appearing
in figure 8.19, which are representative of the following types of scenes: two correspond to scenes with
curved objects, (a) and (b); two contain mainly natural objects, (c) and (d); and, finally, two are
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(a) (b) (c) (d) (e)

Fig. 8.17. Examples of noisy synthetic images used for comparing C3E and S&G: (a) noise×1; (b) noise×2;
(c) noise×3; (d) noise×4; (e) noise×5.

standard images, (e) and (f). Performance was evaluated using the manually-generated reference edge
maps also shown in figure 8.19, which were drawn according to the following criteria:

• Edges cover whole reflectance transitions, so that the reference edge map can, and in fact do,
contain thick edges.

• In accordance to the discussion about the object attribute that should steer edge detection and
image segmentation tasks (section 4.3), edges were made to correspond to exclusively material
transitions. This is specially relevant for images containing natural objects, such as the images
of figure 8.19(c) and (d). As can be observed in the respective reference edge maps, the different
leafs were not put apart since all of them correspond to, approximately, the same material; only
when there is a noticeable pigmentation change an edge was drawn. An analogous reasoning can
be applied to the peppers standard image of figure 8.19(f).

• Transitions between non-shadow and shadow areas were labeled as edges since none of the algo-
rithms involved in the experimental results is able to tolerate them in practice.

It is important to notice that some of the images of figure 8.19 can more or less slightly deviate from
the image formation model assumed by the physics-based algorithms involved in this comparison,
specially regarding the standard images. This is because not all the surface materials appearing on
those regions have been proved to satisfy the Dichromatic Reflection Model (it was initially conceived
for inhomogeneous dielectrics, see section 2.3.4). However, this sort of deviations belong to the term
scene noise introduced in section 4.4.3, and would, therefore, be useful to observe the degree of tolerance
of C3E and S&G to this sort of noise.

Figure 8.20 presents the results for the first experiment with real images. It shows Baddeley’s
C3E values for the image appearing in figure 8.19(a), varying t between 1 and 15. As can be noticed,
optimum results are obtained for t = 3 and t = 4, although the interval involving from t = 2 until
t = 5 produces very similar values. The lower rows of figure 8.20 presents the edge maps (superimposed
on the original image and alone) for t = 2..6, the values giving a performance measure below 1. They
show how, as t increases, the number of edges decreases. Nevertheless, other edges not appearing for
lower values of t appear with larger values (i.e. observe the top of the candle). This is the combined
effect of the thinning and the post-processing steps. Finally, observe that for reasonable values of t
the edges found tend to constitute closed contours, which will be essential for the image segmentation
algorithm which will be proposed in chapter 9.

On the other hand, figure 8.21 and table 8.3 shows comparison results for all the images appearing in
figure 8.19. As can be noticed, C3E outperforms S&G numerically in all cases, sometimes with a larger
difference (figure 8.19(a)) and other times very slightly (figure 8.19(c)). As for M&G, C3E tends also to
produce better edge maps, although, on some occasions, the numerical values are almost the same. The
larger differences in performance between physics and non-physics-based algorithms appear, as could
be easily guessed, for images containing curved objects (figures 8.19(a) and (b)). Finally, notice that,
for some images, M&G produces better edge maps than S&G. However, this happens more notoriously
with the standard images, for which, surely, gamma correction was not turned off, what can affect
S&G; it seems, thus, that the non-linearity of camera output affects more to S&G than to C3E.
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(a) Spheres & Planes set (Baddeley’s measure)

noise×1 noise×2 noise×3 noise×4 noise×5

C3E S&G C3E S&G C3E S&G C3E S&G C3E S&G

t = 3
0.34 - 0.10 0.26 - 0.08 0.26 - 0.09 0.28 - 0.17 0.33 - 0.19

[0.14,0.63] [0.12,0.65] [0.11,0.66] [0.10,0.88] [0.12,0.88]

t = 4
0.26 - 0.07 0.48 - 0.24 0.26 - 0.10 1.24 - 0.41 0.32 - 0.14 2.09 - 0.41 0.41 - 0.21 2.68 - 0.30 0.53 - 0.24 3.11 - 0.23

[0.11,0.41] [0.07,1.23] [0.09,0.69] [0.40,2.12] [0.08,0.69] [1.09,3.00] [0.11,1.04] [1.94,3.37] [0.15,1.21] [2.34,3.58]

t = 5
0.25 - 0.07 0.29 - 0.15 0.42 - 0.18 0.55 - 0.23 0.76 - 0.25

[0.09,0.42] [0.06,1.04] [0.12,0.94] [0.12,1.17] [0.21,1.40]

(b) Only-Planes set (Baddeley’s measure)

noise×1 noise×2 noise×3 noise×4 noise×5

C3E S&G C3E S&G C3E S&G C3E S&G C3E S&G

t = 3
0.20 - 0.07 0.19 - 0.11 0.19 - 0.14 0.22 - 0.19 0.31 - 0.25

[0.00,0.34] [0.00,0.76] [0.00,0.91] [0.00,0.86] [0.00,0.93]

t = 4
0.19 - 0.08 0.29 - 0.24 0.20 - 0.15 1.00 - 0.48 0.22 - 0.20 1.79 - 0.60 0.32 - 0.26 2.48 - 0.42 0.47 - 0.30 2.87 - 0.34

[0.00,0.48] [0.00,1.18] [0.00,0.91] [0.00,2.58] [0.00,1.07] [0.00,3.47] [0.00,1.17] [1.37,3.62] [0.00,1.08] [2.14,4.18]

t = 5
0.19 - 0.09 0.21 - 0.17 0.32 - 0.25 0.48 - 0.30 0.65 - 0.35

[0.00,0.56] [0.00,0.95] [0.00,1.06] [0.00,1.34] [0.00,1.52]

(c) Spheres & Planes set (d) Only-Planes set
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Fig. 8.18. Comparison between C3E and S&G under increasing noise conditions by means of synthetic images and Baddeley’s measure: (a,c) spheres and planes
set; (b,d) only-planes set; (a,b) every entry of the table consists of average - standard deviation [minimum,maximum] for Baddeley’s measure; (c,d) plots of
average and standard deviation of Baddeley’s measure for t = 3..5.
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(a) (b) (c)

(d) (e) (f)

Fig. 8.19. Real test images and their manually-generated ground truths.

t → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baddeley 1.36 0.78 0.75 0.75 0.78 0.92 1.12 1.27 1.32 1.40 1.42 1.47 1.53 1.57 1.61

(a) (b) (c) (d) (e)

Fig. 8.20. Experimental results for C3E and real image 8.19(a): [top] Baddeley’s measure for t = 1..15;
[bottom] resulting edge maps for (a) t = 2, (b) t = 3, (c) t = 4, (d) t = 5 and (e) t = 6.



8.9 Experimental Results 209

C3E
S&G M&G

t = 3 t = 4 t = 5

8.19(a)

Pratt(1/9) 0.68 0.65 0.62 0.56 0.58

Pratt(1) 0.62 0.59 0.57 0.51 0.51

D×100 6.21 6.15 6.20 6.78 7.79

Baddeley 0.75 0.75 0.78 0.82 1.13

8.19(b)

Pratt(1/9) 0.73 0.71 0.69 0.59 0.64

Pratt(1) 0.55 0.54 0.53 0.42 0.46

D×100 5.17 5.03 4.87 5.47 5.83

Baddeley 0.97 0.90 0.85 1.08 1.22

8.19(c)

Pratt(1/9) 0.69 0.70 0.72 0.67 0.64

Pratt(1) 0.52 0.53 0.56 0.47 0.48

D×100 12.67 12.23 11.50 14.04 12.28

Baddeley 1.69 1.64 1.56 1.73 1.78

8.19(d)

Pratt(1/9) 0.52 0.56 0.60 0.44 0.47

Pratt(1) 0.38 0.42 0.46 0.28 0.33

D×100 13.88 12.20 10.99 18.57 13.82

Baddeley 2.22 2.03 1.89 2.73 2.32

8.19(e)

Pratt(1/9) 0.88 0.88 0.86 0.80 0.70

Pratt(1) 0.70 0.73 0.71 0.58 0.58

D×100 6.59 6.05 6.05 8.80 6.02

Baddeley 0.80 0.66 0.71 1.15 0.78

8.19(f)

Pratt(1/9) 0.47 0.53 0.56 0.46 0.54

Pratt(1) 0.35 0.41 0.44 0.30 0.43

D×100 12.67 10.56 9.42 13.71 9.04

Baddeley 2.30 2.01 1.86 2.48 1.87

Table 8.3. Comparison between C3E, S&G and M&G by means of real images.

At the qualitative level, it deserves special attention the behaviour of M&G with regard to, in
particular, C3E. Observing the results of figure 8.21(a) and (b), i.e. the two images containing curved
objects, it can be noticed that M&G produces edges related with scene curvature while C3E does not
because of its basis on the physics of image formation. For instance, see the green cup of the image in
figure 8.21(a). However, in the same image, it can be noticed that C3E does not deal with small details
as well as M&G, as can be observed in the ornamentation of the upper part of the flowerpot. Clearly,
the contours are better delineated by M&G. This behaviour has to do with the fact that C3E labels
as edges all the pixels involved in a reflectance transition and, thus, thick edges result, what makes
difficult the treatment of details of reduced size. The obvious solution for these cases is, of course, to
increase image resolution. On the other hand, referring to S&G, this algorithm tends to produce an
important quantity of spurious edges, probably due to the instabilities of photometric invariants it is
based on, which is more notorious in the standard images and the images containing natural objects.

To finish with this section, figure 8.22 shows edge maps for another set of real images, for which
no ground truth has been generated, so that only a qualitative analysis can be performed. As before,
some of the images strictly conform to the assumed model of image formation, while others do not.
As can be observed, M&G tends to miss some useful edges which are indeed identified by C3E. See,
among other cases, the big red and the small green balls in the second image, in the upper group of
images, or the different treatment given to leaves in the images of the lower group. A similar behaviour
exhibits S&G in the third image of the upper row. As before, S&G introduces a lot of spurious edges
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(a) (b) (c)

C3E

S&G

M&G

(d) (e) (f)

C3E

S&G

M&G

Fig. 8.21. Edge maps resulting for C3E (t = 4), S&G and M&G for images in figure 8.19.

in the edge maps. Nevertheless, S&G seems to produce the best edge map for the lena image (third
image of the second row) if the spurious edges are removed. Finally, observe that, once again, small
details tend to put C3E in trouble, such as in the case of the chain of the second image of the second
row.

8.10 Conclusions

A study about what happens at the signal level when reflectance changes take place has been presented
in this chapter. As has been shown, colour channels keep coupled in uniform reflectance areas, while
the coupling is broken in a number of ways at pixels involved in reflectance transitions. This coupling
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C3E

S&G

M&G

C3E

S&G

M&G

Fig. 8.22. Edge maps resulting for C3E (t = 4), S&G and M&G for more real images.
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has been expressed in the form of a set of properties which are fulfilled by all the pixels corresponding
to the same surface material (i.e. same reflectance), so that, when any of them is not satisfied, the
only possible cause of the unfulfillment reduces to a change in reflectance. The satisfaction of those
properties has been studied for different instantiations of the image formation model, which have
allowed determining the constraints to be met by the scene so that these properties can be effectively
used to locate reflectance transitions. An important aspect of those properties is that they do not
depend on the particular expression selected for the geometrical terms mb and mi (equation 4.6). The
coupling properties have in turn been used to derive a number of types of edges which can be easily
detected by analyzing the way how the colour channels are related among them.

An edge detector named C3E (Colour Channel Coupling-based Edge detection) rooted on the facts
resulting from the previous study has also been proposed. Experiments with synthetic and real images
have been presented, showing the power of the approach for dealing with scenes with curved objects
and different surface materials. Besides, C3E has been compared with the physics-based edge detection
algorithm by Stokman and Gevers [79, 262] (S&G) and with the recognized non-physics-based edge
detection algorithm by Meer and Georgescu [168] (M&G). The following conclusions can be drawn
from the different tests performed:

• The scene constraints concerning the fulfillment of the coupling properties have not been a serious
problem for obtaining sound edge maps. Only in some cases, specularities have produced false
CHC/NCD/NDD edges.

• C3E does not show important differences between scenes where objects shading is noticeable with
regard to scenes where it is not. On most occasions, four uncertainties have been enough to produce
adequate edge maps.

• C3E has exhibited a good tolerance to noise, although it has been observed that as the level of
noise increased a lower number of uncertainties produced better edge maps. Intensity uncertainties
have also resulted to be useful in this computer vision task.

• C3E has outperformed S&G in all the experiments, although the differences were more notorious
with synthetic scenes than with real images.

• C3E has obtained better scorings than M&G particularly with images containing objects showing
an important level of shading. In the rest of cases, a similar performance has been observed.

As for the computation time of the edge maps, it fluctuated around 1 second in all images in a Pentium
IV @ 3GHz machine, for image sizes ranging from 256 × 256 to 512 × 512.
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Image Segmentation by Analysis of Colour Channels Coupling

Looking for image regions satisfying an homogeneity criterion and looking for the region borders are,
at least theoretically, complementary problems aiming at producing a segmentation of an image. This
fact, together with the tendency of C3E to produce closed contours for adequate values of t, has
led to the development of a new segmentation strategy called C3S (Colour Channels Coupling-based
Segmentation). C3S comprises C3E and two more stages: one which makes regions grow according to
the information provided by the (non-thinned) edge maps produced by C3E, and another one which
merges regions corresponding to the same scene material.

This chapter presents C3S in the following way: section 9.1 outlines C3S, while the details about the
two additional stages of C3S, region growing and region merging, appear in, respectively, sections 9.2
and 9.3; section 9.4 presents the experiments performed and the corresponding results, and, finally,
conclusions appear in section 9.5.

9.1 Outline of the Segmentation Algorithm

The experiments performed have shown that C3E non-thinned edge maps tend to contain, for adequate
values of t (typically t = 3..4), closed contours enclosing regions of uniform reflectance. Therefore, a
first partition of the image can be obtained if connected components not including edge pixels are
found and edges are then added to the nearest most similar connected component. As the edge map
is presumed to separate pixels corresponding to “steep” specularities from matte pixels, the regions
resulting from the previous process are expected to be describable by, according to the Dichromatic
Reflection Model, linear or point clusters in colour space.

Nevertheless, some times, contours are not finished due to the effects of noise and a path of non-
edge pixels between two regions of different reflectance is created, leading to a region of non-uniform
reflectance. In order to avoid this undesirable result, once the growth of a connected component has
finished, the associated region is accepted only in case of a linear or point-like shape of the corresponding
cluster in colour space; otherwise, the connected component is discarded. In such a case, the associated
pixels are grouped again, although, this time, the cluster in colour space is not let to grow out of control
as pixels are added: as soon as the cluster dimensionality exceeds that of a line, the growing stops and
a new connected component is created and grown. The process continues until no more pixels of the
original connected component are unlabeled.

A region merging stage follows next, in order to remove the probably low, but not generally zero,
degree of over-segmentation which can result. This over-segmentation can be caused by: (1) the thick-
ness of the edges produced by C3E together with the effects of general noise over the image, which can
lead to having a true region split in the edge map; (2) the separation of specular pixels from matte
pixels, most probably due to the presence of GRD edges along the surroundings of a specularity. In
accordance to this two sources of over-segmentation, the second stage of C3S consists of two steps:
one for merging matte regions and another one to join specular regions to their corresponding matte
regions.
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Fig. 9.1. Outline of C3S.

Figure 9.1 shows graphically the sequence of processes involved in C3S, together with the flux of
information. The details for every one of those processes are given in the following sections.

9.2 Region Growing

As was already discussed in section 2.3.4, the Dichromatic Reflection Model predicts that pixels cor-
responding to uniformly coloured objects lie in a hyperplane in colour space, spanned by the common
body and interface reflectances. Within the hyperplane, matte and glossy pixels fall into two generally
different and more or less linear clusters, whose directions coincide with the corresponding body and
interface reflectances. Therefore, since the edge map is likely to separate glossy pixels from matte pixels,
the aforementioned connected components are expected to be describable by linear clusters in colour
space. Consequently, at most one of the eigenvalues resultant from a Principal Component Analysis
(PCA) over the connected component pixels should be large (i.e. the one related with the direction of
the cluster).

Although the experiments performed have shown that the edge maps produced by C3E tend to
contain regions of homogenous reflectance and therefore describable by linear clusters in colour space,
sometimes can happen that because of noise a contour is not finished so as to lead to a complete
separation. In those cases, clusters of dimensionality above a straight line are obtained because pixels
from different scene materials have been put together in the corresponding connected component. In
order to distinguish linear clusters from clusters with a higher dimensionality, at least two eigenvalues
are required to be below a threshold λ2

low, defined as follows:

λlow = t3 max
c

{δ(255c)} , (9.1)
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Fig. 9.2. Example of output of the region growing stage of C3S.

where δ(255c) represents the uncertainty of the largest intensity level for colour channel c. In this way,
the orthogonal distance from any point in the cluster to the straight line chosen as a descriptor can be
said to be, roughly speaking, bounded by λlow, which is, in turn, related to the maximum achievable
uncertainty.

When a connected component does not pass the test described above is accordingly discarded. The
respective pixels are grouped again avoiding pixels whose distance to the present cluster representative
is above a threshold τsplit, where this representative is updated at every iteration of the procedure. This
threshold determines the degree of splitting which is accepted in order to avoid planar and volumetric
clusters, and, therefore, determines the effort which will have to be exerted later during the merging
stage.

Finally, once all the non-edge pixels have been grouped, edge pixels join the adjacent region closest
in colour space in two steps, taking into account the orthogonal distances between edge pixels and the
straight lines describing the different connected components found. In the first step, colour edges not
coinciding with GRD edges are added to existing regions. Next, connected components consisting of
exclusively colour edges are determined and new regions are created. Finally, GRD edges, which have
not been included in any region so far, join the nearest region in colour space. This somewhat complex
part of the growing stage helps to overcome the thickness of colour edges, taking advantage of the
generally narrowness of LOG-based edges. As a result of the growing stage, an initial partition of the
image is obtained.

Observe that this process of incorporating edges to image regions can, and in fact does, make use of
regions information. The edge thinning procedure of C3E, which is similar to the growing stage of C3S,
can only make use, however, of local information, in that case in the form of gradient data. Therefore,
C3S can benefit from global information which is not available for C3E.

By way of example, figure 9.2(right) shows the output of this stage for the image on figure 9.2(left).
As can be noticed, over-segmentation appears around the rim of the cup, in the candle and also in
several places of the flowerpot.

9.3 Region Merging

9.3.1 Merging of non-glossy regions

Because of false edge positives and due to the potentially large thickness of some edges, it is expected
that sometimes regions of uniform reflectance appear split into several parts after the growing stage. In
order to distinguish borders which separate regions which could reasonably be considered as perceptu-
ally different from those which do not, every region border must be analyzed to determine whether it
makes sense from a perceptual point of view or not. This leads, therefore, to a merging strategy based
on local analysis, since only pixels from both regions are involved in the merging decision.

Nevertheless, a global strategy could also be of application here. Such a strategy could be based
on identifying separate clusters in colour space for the whole image and merging regions whose pixels
belong to the same cluster (see [26, 153] for a survey on some segmentation techniques following
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Fig. 9.3. Local analysis versus global analysis for region merging: [top,left] a synthetic image of a scene
containing three materials; [top,right] segmentation ground truth and the unit vectors of the straight lines
where the respective pixels lie on; [bottom,left] pixels in colour space, whole image; [bottom,right] pixels in
colour space, only middle and right regions.

this research line). The quality of the final segmentation would strongly depend, however, on the
ability to produce a cluster for every different scene material. Figure 9.3 illustrates this point with
a synthetic image generated from three materials which should, therefore, lead to a segmentation in
three regions. The ground truth segmentation together with the unit vectors for the straight lines
where the pixels should lie on in colour space are given in figure 9.3(top,right). As can be observed
in figure 9.3(bottom,left), all three regions form a rather compact cluster in colour space when all the
image pixels are considered, what makes difficult producing a segmentation in the true three regions.
However, if only the pixels for the adjacent regions in the middle and on the right of figure 9.3(top,left)
are taken into account, the cloud of points of figure 9.3(bottom,left) clarifies in a structure of two
clusters clearly distinguishable, as it is shown in figure 9.3(bottom,right). In other words, a local
strategy allows putting the different regions into the context of their surroundings what can greatly
contribute to produce a segmentation better than a strategy based on global analysis.

Following the local strategy and given two adjacent regions, they must be merged if there is evidence
that they share a common reflectance. A first condition for this to occur is that their respective pixels
lie on the same straight line in colour space. Nevertheless, this condition can only check that the
corresponding reflectances have the same orientation. Two regions can still have their pixels aligned
in colour space but the corresponding reflectances be different, as it is shown in figure 9.4. In such a
case, colour space turns out to be useless unless both regions define separate clusters, which is just the
opposite of what happens in the case of figure 9.4. A more general approach is thus needed.

In figure 9.4, both regions can be distinguished because of the high colour variation along the border
separating them. In fact, it is an even more local cause what justifies putting them apart in the final
segmentation, since that variation in intensity would not be meaningful if in the neighbourhood of the
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Fig. 9.4. [left] A synthetic image of a scene containing two materials whose reflectances are parallel to one
another. [middle] Segmentation ground truth and the reflectances of both regions. [right] Pixels in colour space,
whole image.

border, and within the regions, such variation was not infrequently high. However, from section 8.6,
we know that, on situations where reflectances are parallel to each other, an ambiguity results as for
the determination of the source of an intensity variation, so that, from a theoretical point of view, it
could be either due to an abrupt change in the surface normal or a change in reflectance. As already
discussed in section 8.6, adding the smoothness constraint for scene surfaces allows reducing the source
of a large intensity change to a reflectance transition, although at the expense of classifying sides of
the same object and same material in different regions. Nevertheless, the amount of colour variation
along the border is the only clue available to make the decision without other knowledge than the
sheer colour signal.

Summing up, two conditions must be met for the merging to occur: (1) the pixels of both regions
must be “aligned” in colour space; and (2) a low colour variation, relative to the change in colour
within the regions involved, must be found along the border separating both regions. The following
explains how (1) and (2) are implemented in C3S:

• To check condition (1), pixels corresponding to every pair of adjacent regions are clustered over
the RGB colour space to try to determine whether both regions constitute in fact an only linear
cluster. A possibilistic C-means algorithm (PCM) has been used for this purpose (see appendix D).
In its general formulation, this is an iterative method which assigns a possibility uij ∈ [0, 1] to every
point xi of the data set depending on its distance to everyone of the considered clusters θj , and
then recomputes the representative of every cluster using all the points of the data set weighted by
their possibilities of pertaining to the cluster. This process is repeated until convergence. Besides,
because of the concept of possibility embedded into the clustering scheme, PCM possess the so-
called mode-seeking property. As a consequence, if the structure of the data set consists of less
clusters than initially hypothesized, after convergence, some cluster representatives will be more or
less similar to one another, giving, thus, a correct interpretation of the data set structure.
In this particular application of PCM, for every pair of regions, two clusters are initially guessed.
The lines best describing each cluster, produced by PCA from the respective covariance matrices,
are used as the initial cluster representatives. After every iteration, the cluster descriptors are
updated, once again by means of PCA, but now using a covariance matrix computed using the
pixels of both regions weighted by the corresponding possibilities uij . Furthermore, the orthogonal
distance between a point and a straight line is used to determine the distance between pixels and
cluster representatives. Finally, after convergence, function ζpcm is evaluated as follows:

ζpcm =
1

n1 + n2

n1+n2∑

i=1

|ui1 − ui2| (9.2)

where θ1 and θ2 represent both clusters and n1 and n2 are the respective number of pixels. If
ζpcm ≤ τpcm (i.e. all the pixels have a similar possibility of pertaining to the two clusters), both
regions are considered aligned in colour space.
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Fig. 9.5. Strips used to compute the statistical measures involved in ζcon.

PCM formulation includes two parameters which, as indicated in appendix D, determine the quality
of the clusters produced. On the one hand, the scale parameter ηj for every cluster should be set to
the expected thickness of the wanted linear clusters, as suggested in [134] for clustering applications
where linear structures are sought. Since such thickness is the consequence of image noise, ηj should
be, thus, related with intensity uncertainties. As λlow has been set as a thickness bound for a region
to be considered valid during the growing stage, ηj = λlow,∀j, seems to be a good election. As for
the fuzzifier q, a value of 1.1 has been chosen to make possibility functions decay rapidly when the
distance between a pixel and the cluster representative surpasses ηj .

• To check condition (2), the change in colour along the common border must be compared with the
colour variation due to changes in curvature in the nearness of the common border within each
region. In this work, the colour variation is determined taking the pixel-by-pixel Euclidean distances
in colour space. In other words, for a pixel not in the border but close to it, the eight distances
with its eight neighbours are used; in case it is in the border, the distances involving this pixel and
any other neighbour belonging to the opposite region are considered. Next, the mean pixel-by-pixel
distance across the regions’ common border ∂12 is compared with the mean pixel-by-pixel distance
at every side of the border within each region, ∂1 and ∂2, as follows:

ζcon = max

{
∂12 − ∂1

σ∂1
,
∂12 − ∂2

σ∂2

}
, (9.3)

where σ∂1 and σ∂2 are the standard deviations of pixel-by-pixel distances for each region and are
used to normalize the differences ∂12 − ∂1 and ∂12 − ∂2. In order to use only local information,
the statistical measures involved in the computation of ζcon are taken along a strip of width wc at
both sides of the border (see figure 9.5). If ζcon ≤ τcon, the intensity variation across the border
separating both regions is not considered relevant.

Once all the pairs of adjacent regions have been considered, those that fulfill conditions (1) and
(2) are inserted in a heap ordered in ascending order, according to the value of ζpcm and ζcon, where
ζcon is the main ordering key. In this way, the adjacency in the top of the heap corresponds to the
pair of regions which are more likely to share a common reflectance. After their merging, the heap
is reorganized to remove the old adjacencies and insert the new ones. That is to say, adjacencies are
reconsidered after every merging and the most similar regions are always merged first. A more formal
description of the merging stage of C3S can be found in pseudocode 9.1.

To finish with this section, observe that there is a certain parallelism between conditions (1) and (2)
and, respectively, the detection of edges CHC/NCD/NDD and GRD. In a certain sense, condition (1)
and edges CHC/NCD/NDD are related with the detection of changes in the orientation of reflectance,
while condition (2) and edges GRD are linked with changes between parallel reflectances. Given these
similarities, it can seem redundant to use different techniques for detecting the same. However: (i)
condition (1) provides an analysis finer than edges CHC/NCD/NDD; and (ii) conditions (1) and (2)
make use of regional information which, when computing the edge map, is not available. Therefore,
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Pseudocode 9.1 Algorithmic formulation of the merging stage of C3S.

(1) initialization
HeapInitialize(H);
for every region Ri

for every region Rj such that j > i
if AdjacentRegions(Ri,Rj) then

if ζcon(Ri, Rj) ≤ τcon and ζpcm(Ri, Rj) ≤ τpcm then
HeapInsert(H, Ri, Rj , ζcon(Ri, Rj), ζpcm(Ri, Rj));

endif
endif

endfor
endfor

(2) while not EmptyHeap(H) do
(Ri, Rj) = HeapRoot(H); HeapRemoveRoot(H);
for every region Rk such that k 6= i and k 6= j

if AdjacentRegions(Rk,Ri) then HeapRemove(H,Rk,Ri);
endif
if AdjacentRegions(Rk,Rj) then HeapRemove(H,Rk,Rj);
endif

endfor
Rn = MergeRegions(Ri,Rj); DeleteRegion(Ri); DeleteRegion(Rj);
for every region Rk such that k 6= n

if AdjacentRegions(Rk,Rn) then
if ζcon(Rk, Rn) ≤ τcon and ζpcm(Rk, Rn) ≤ τpcm then

HeapInsert(H, Rk, Rn, ζcon(Rk, Rn), ζpcm(Rk, Rn));
endif

endif
endfor

endwhile

conditions (1) and (2) and the whole merging stage are expected to be more powerful, with the aid of
the edge map, to locate accurately reflectance changes.

9.3.2 Merging of specularities

General description

As has been mentioned before, it is possible that, in certain cases, a specularitity is surrounded by
edges in the edge map and, consequently, its pixels result separated from the rest of pixels of the object
(i.e. in a different region) after the region growing. In fact, because of the high intensity gradients which
can be expected at the “base” of any specularity, it is likely that they still appear isolated in separate
regions after the first step of the merging stage, and, thus, special measures must be taken to make
specularities join their respective main regions.

The problem of detecting and handling specularities has been considered in several studies within
the physics-based vision research area. The search of a certain configuration of clusters in colour space,
the use of photometric invariants or transformed colour spaces, or the use of light polarizers are among
the main approaches available (see [10, 68, 129, 179, 186, 249, 250, 268, 287] among many others). On
the one hand, some of them do not tolerate, from a theoretical point of view, ambient illumination.
On the other hand, some of them need several images of the same scene to accomplish the separation
of reflection components. Finally, others assume a segmented image. The approach described below
results quite simple to implement and manages to merge those specularities which, due to the way
the edge map is built, are typically put in a separate region. In particular, the approach performs well
because does not depend on the size of the specularities (contrary to methods based on particular
configurations of clusters) or the amount of image noise or camera clipping (contrary to methods
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Fig. 9.6. Detection of specular pixels: (a) the four orientations examined; (b) example of neighbourhood and
symbols involved.

relying on photometric invariants or transformed colour spaces). Furthermore, no special equipment is
needed (contrary to methods based on light polarization).

The method proposed here makes use of an approach similar to [22,294], where regions in the image
looking too bright to be Lambertian are found. To this end, any pixel in the image with the largest
intensity within a neighbourhood of high dynamic range together with a large gradient, both in the
same colour channel, is considered a candidate to be the “peak” of a possible specularity. Next, all the
surrounding pixels whose intensity is above a certain percentage of the peak intensity are incorporated
into the group. The spatial dimension of the set is finally computed to discard candidates not having
point-wise or linear-wise shapes.

Once specular pixels have been located, those regions which contain a high percentage of them
are considered to be one of those regions which get isolated because of the proliferation of edges
around specularities. Accordingly, C3S merges them with one of their respective adjacent regions.
Since specularities are typically found in the middle of matte regions, “specular regions” usually have
an only adjacent region, which surrounds them. In that case, there is an only possibility of merging
and no decision has to be made. When there are two or more adjacent regions, C3S selects the adjacent
region with the largest common border. It is true that this decision seems rather arbitrary. However, it
has resulted to work quite well during the experiments performed, as will be seen later. On the other
hand, observe that the incidence of the particular criterion chosen is quite reduced because the likely
situation corresponds to one adjacency per specular region.

Implementation details

From the implementation viewpoint, specular pixels are detected by scanning the whole image, looking
for local maxima in bright areas of the image; therefore, no information from the previous segmentation
stages is used and just the input image is involved in the process. The search for local maxima is
performed along four one-dimensional neighbourhoods centered at every image pixel and oriented in
directions N-S, E-W, NW-SE and NE-SW (see figure 9.6).

Once a local maximum is found, the dynamic range along a neighbourhood of 2ws + 1 pixels in
the direction of detection is considered. First, minimum intensities at every side of the neighbourhood
are obtained, Dc

l = min{Dc(k), k = −ws, . . . , 0} and Dc
r = min{Dc(k), k = 0, . . . , ws}. Next, quotients

DRc(k) = Dc(k)/Dc
l , k = −ws, . . . , 0, and DRc(k) = Dc(k)/Dc

r, k = 0, . . . , ws, are computed. For
k = 0, the pixel under consideration, DRc(k) = max{Dc(0)/Dc

l ,D
c(0)/Dc

r}.
At the same time, normalized gradients are calculated for every pixel in the neighbourhood. More

precisely, for every pixel, quotients (Dc(k) − Dc(k − 1))/Lc
d, k = −ws, . . . , 0, and (Dc(k + 1) −

Dc(k))/Lc
d, k = 0, . . . , ws, are determined, where Lc

d = qc
0

∫
Λ

Ld(λ)τ c(λ)s(λ)dλ is the (scaled) radi-
ance coming from the directional light source for colour channel c (already introduced in section 8.2,
proposition 8.8). If pixels k − 1, k and k + 1 are all assumed to correspond to the same scene material
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Fig. 9.7. Plots of ∆θ for different values of ∆Dc∗, θ and ρc
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Fig. 9.8. Relationship between ∆θ and surface normals of pixels involved.

and they do not show interface reflection, those quotients have the meaning expressed in equations 9.4
and 9.5:

∆Dc∗
fw(k) =

Dc(k + 1) − Dc(k)

Lc
d

= (mb(k + 1) − mb(k))ρc
b , (9.4)

∆Dc∗
bk(k) =

Dc(k) − Dc(k − 1)

Lc
d

= (mb(k) − mb(k − 1))ρc
b , (9.5)

where ρc
b was already introduced in equation 8.5. In this way, the gradient measures of equations 9.4

and 9.5 no longer depend on the illumination strength and both lie within the interval [−1,+1].
Now, to investigate further into the meaning of ∆Dc∗

bk(k) and ∆Dc∗
fw(k), let us expand mb(k) and

mb(k − 1) as, respectively, cos(θ) and cos(θ + ∆θ). Figure 9.7 plots ∆θ as a function of ∆Dc∗(k) (i.e.
any of ∆Dc∗

bk(k) or ∆Dc∗
fw(k)), θ and ρc

b on the basis of equations 9.4 and 9.5. From these plots it
can be seen that, for instance, ∆Dc∗(k) = 0.3 implies ∆θ is, at least, almost 20◦, irrespectively of ρc

b
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Pseudocode 9.2 Test used by C3S to detect a specularity peak. (break exits the loop.)

specularityPeak := false;
if DRc(0) ≥ τsdr then

ok1 := false; ok2 := false;
for k := 0 to ws

if DRc(−k) ≥ τsdr and ∆Dc∗
bk(−k) ≥ τsgr then

ok1 := true;
endif
if DRc(k) ≥ τsdr and −∆Dc∗

fw(k) ≥ τsgr then
ok2 := true;

endif
if ok1 and ok2 then break; endif
if DRc(−k) < τsdr and DRc(k) < τsdr then break; endif

endfor
if ok1 and ok2 then specularityPeak := true; endif

endif

Table 9.1. Parameter values used for the images of figure 9.9.

parameter left image center image right image

ws 5 5 5
τsdr 1.5 1.5 1.5
τsgr 0.3 0.3 0.3
τsppc 0.66 0.66 0.66
τsdim 1.0 1.0 2.0

and θ. Now, observe figure 9.8, where ∆θ is related with surface normal vectors at the corresponding
image locations. As can be seen, given ∆θ, the angle between surface normal vectors lies in the interval
[∆θ, 2θ + ∆θ]. Therefore, following the example, if ∆Dc∗(k) = 0.3, the angle between surface normal
vectors is, at least, almost 20◦. Summing up, ∆Dc∗, a function of the intensity change between adjacent
pixels, has been related with the minimum change in orientation which supports it, provided that the
pixels involved do not show interface reflection. Therefore, if smooth surfaces are expected in the scene,
so that changes in orientation between adjacent pixels should not be above, say 10◦, and a change of
orientation of, at least, 20◦ results, then we can deduce the intensity change cannot only be imputed
to the scene objects curvature but to a wrong hypothesis: at least one of the pixels considered shows
interface reflection, or there is a reflectance transition.

Once DRc(k), ∆Dc∗
bk(k) and ∆Dc∗

fw(k) have all been calculated, given thresholds τsdr and τsgr, the
test shown in figure 9.2 is applied for colour channel c. As can be observed, this code looks for a peak
in intensity like the one shown in figure 9.6(b) in order to discard the aforementioned possibility of
being a change in reflectance, instead of a specularity, the cause of a high dynamic range or a large
gradient. In case the result of the test is positive for any colour channel and any of the above-mentioned
directions, the pixel under consideration is labelled as a specularity peak.

Once the image has been scanned and all specularity peaks have been detected, the image area
covered by the specularity associated to every specularity peak is located by determining the connected
component including the peak and consisting of the surrounding pixels having an intensity level above
a certain percentage τsppc of the peak corresponding intensity. Its spatial dimension is computed next.
In case it cannot be considered a point or a line, the area detected is considered a false specularity
and therefore discarded. The spatial dimension is found applying PCA to the set of image locations
covered by the connected component. To be considered describable by a point or a line, at least one
of the two corresponding eigenvalues is required to be below threshold τsdim.

By way of example, figure 9.9 shows the specularities detected for three images where specular
reflection is noticeable. As can be observed, all the specularities have been correctly located, although,
in the image on the left, there is a false specularity detected in the flowerpot because a whitish
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Fig. 9.9. Examples of detection of specularities: [1st row] original images; [2nd row] specularities detected in
black; [3rd row] specularities superimposed in yellow over original images.

image area is between two blackish image areas, which gives rise to a high dynamic range and a large
gradient, together with an adequate spatial dimension, which misleads the algorithm. Table 9.1 details
the parameter values for this experiments. As can be seen, only τsdim had to be tuned for every image.
This is logical since it depends on the size in pixels of the specularity, and this changes with image
resolution, distance from the camera to the scene and the geometry of the glossy object; ws can also
show this dependence although the experiments have not shown a dependence so critical as in the case
of τsdim. The remaining parameters, however, are quite stable. Finally, τsppc was set to 0.66 = 2

3 as
suggested in [22].

To finish, once the map of specularities has been obtained, those regions which include specular
pixels in a number above a certain percentage τspct join the adjacent region with which the number
of pixels in the common border is the largest. Most times, however, regions containing specularities
are totally surrounded by an only region (i.e. the number of adjacent regions is just 1). During the
experiments performed, 50% of pixels have been required to be specular for a region to be qualified as
a specularity put apart during the region growing stage.

9.3.3 An example of merging

By way of example of the output of the region merging stage, figure 9.10(right) shows the final seg-
mentation for the image on figure 9.10(left), while the output of the growing stage is also repeated
in figure 9.10(middle) for comparison purposes. As can be observed, most of the oversegmentation is
removed after the merging stage. Only the edge corresponding to the rim of the cup and the shadow
in the candle remain.
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Fig. 9.10. Example of output of the region merging stage: [left] original image; [middle] output of the growing
stage; [right] final segmentation.

9.4 Experimental Results

This section presents a set of results for C3S for both synthetic and real images. Some of these experi-
ments aim at showing the performance of C3S when the different parameters involved are varied, while
others involve other segmentation algorithms in a performance comparison. More specifically, three seg-
mentation methods have been considered: the physics-based algorithms by Klinker et al. [129] (KLN
from now on) and Gevers [68] (GEV from now on), together with the non-physics-based algorithm by
Comaniciu and Meer published in [29]1 (C&M from now on).

As for parameters, KLN, GEV and C3S have both a number of parameters which have to be set up
according to the requirements of the particular experiment, in order to obtain the best performance;
accordingly, they are explicitly indicated in every case. The C1C2C3 space has been selected among
the three colour spaces suggested by Gevers in [68] as the working space for the GEV algorithm,
since it provides invariance to objects curvature; the RGB space will also be used in an experiment
with real images, as will be seen later. The third colour space, L1L2L3, which requires white-balanced
cameras, will however not be used in any moment of the comparison. On the other hand, C&M selects
automatically the algorithm parameters according to the type of result required: under-segmentation,
over-segmentation and quantization. Given that non-physics-based segmentation algorithms tend to
over-segment the image, the under-segmentation option is chosen in all the experiments where C&M
is involved.

As for C3S post-processing stage, this time no special actions were taken over the segmentation
output.

Finally, as suggested in section 4.4.2, segmentation performance will be measured regarding both
the classification and the contour localization aspects. Unless otherwise stated, the CG(90), OS(90)
and US(90) measures defined in section 4.4.2 will be used for the former, while the second aspect will
be measured mostly by means of Baddeley’s measure. (In the two following sections, the (90) will be
removed from CG, OS and US for the sake of simplicity.)

9.4.1 Experiments with synthetic images

The experimental results section of chapter 8 showed that the performance of C3E did not depend
on whether the scene objects shading was noticeable in the processed images or not. Because of this,
this section for evaluating the performance of C3S will directly present results for scenes with an
important presence of objects shading. As on other occasions, synthetic images are contaminated with
noise following pseudocode 6.3 and the camera noise parameters estimated in section 6.4.1, what will
be referenced as normal noise conditions.

On the other hand, the values given to the different parameters determining C3S behaviour are
indicated in tables 9.2(a), (b), (c) and (d). As can be observed, many of those parameters were left
constant, and the remaining ones were put as a function of the same parameter t of C3E. As the
experimental results will show below for synthetic images and in the next section for real images,
this configuration of parameters for C3S allows it to successfully segment many types of images, what

1 The code is publicly available at http://www.caip.rutgers.edu/ c̃omanici/segm images.html
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Table 9.2. Parameter values used by C3S in the experiments with synthetic images.

(a) (b)

edge map computation

t1 same value as t
σLOG 1.0

t2 same value as t

region growing

t3 same value as t
λlow t3 maxc{δ(255c)}
τsplit same value as λlow

(c) (d)

merging of matte regions

q 1.1
η same value as λlow

τpcm 0.1
wc 5
τcon same value as t

specularities detection and merging

ws 5
τsdr 1.5
τsgr 0.3
τsppc 0.66
τsdim 1.0
τspct 50%
Lc

d according to the synthetic scene

minimizes the burden of having to set up the a priori rather large number of parameters, reducing it
to configuring just one parameter most times.

Figure 9.11 shows results for C3S and the spheres and planes set, varying t between 1 and 6. The
table of figure 9.11(a) provides average values and standard deviations for CG, OS, US and Baddeley’s
measures; besides, the complete range of measurements attained is also given under the term 100 %
range, as well as the interval covering 90% of the values. On the other hand, figures 9.11(b), (c), (d)
and (e) plot average and standard deviation values in the form of error bar plots, together with the
median values as dotted lines.

As can be observed, OS changes very little among the different cases, while CG decreases and
US increases as t becomes larger. This is because, as t increases, the probability of having non-closed
contours is bigger, what gives rise to regions mixing pixels from different true regions, and therefore
leads to non-correctly grouped pixels and under-segmentation. Up until t = 4, the percentage of
correctly grouped pixels at the 90% level is above 95%, while over-segmentation is below 10% and
under-segmentation does not involve more than a 5% of the image. As for Baddeley’s measure, it
remains almost constant for all the cases and the results indicate that the error in the localization of
reflectance transitions is, on average, lower than one pixel.

A more careful analysis of all these data through the 100% ranges also reveals that the performance
associated to some images drops in a significant way: e.g. observe that, for t = 3, CG, OS and US
attain extreme values such as 22.56%, 43.11% and 77.40%, respectively. However, the 90% ranges show
a dramatic improvement in every measure, what indicates the presence of outliers. In other words,
most times values of t up to 4 yield quite acceptable segmentation results, although some images can
require a better and detailed configuration of parameters. This behaviour can also be deduced from
the median values of the plots of figure 9.11: for instance, CG median is all the time 100%, what means
that at least 50% of the images are perfectly segmented, within the 10% tolerance of pixels dispersion
associated to CG(90).

In a second experiment, C3S was compared against KLN and GEV under normal noise conditions.
The corresponding results can be found in figure 9.12. As can be observed, C3S outperforms both KLN
and GEV for the three values considered for t, 2, 3 and 4. The improvement in performance is clear
for the case of GEV, while the differences are rather narrow for the case of KLN. Besides, observe that
C3S localizes reflectance transitions in a more accurate way. The parameters used for KLN and GEV
corresponded to the ones providing better performance in a series of trials. The respective values can
be found in tables 9.3 and 9.4.

Finally, all three algorithms were faced against increasing noise conditions. The procedure for
generating the different sets of noisy synthetic images was the same followed for comparing C3E and
S&G in chapter 8. As for that experiment, intensity uncertainties were re-calculated for C3S for every
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t → 1 2 3 4 5 6

avg - std 99.62 - 0.69 99.42 - 2.57 97.29 - 10.89 95.45 - 14.11 93.17 - 16.96 88.75 - 21.67
CG 100% range [94.42,100.00] [75.98,100.00] [22.56,100.00] [22.56,100.00] [22.56,100.00] [13.76,100.00]

90% range [98.84,100.00] [98.34,100.00] [78.38,100.00] [59.61,100.00] [53.74,100.00] [33.72,100.00]

avg - std 9.47 - 9.05 8.69 - 9.27 8.65 - 9.59 8.39 - 9.09 8.47 - 9.12 8.38 - 9.09
OS 100% range [ 0.00,43.11] [ 0.00,43.11] [ 0.00,43.11] [ 0.00,43.11] [ 0.00,43.11] [ 0.00,43.11]

90% range [ 0.00,26.41] [ 0.00,27.80] [ 0.00,29.31] [ 0.00,25.12] [ 0.00,25.12] [ 0.00,25.12]

avg - std 0.25 - 0.69 0.45 - 2.56 2.56 - 10.91 4.36 - 14.14 6.58 - 17.01 10.94 - 21.78
US 100% range [ 0.00, 5.58] [ 0.00,23.81] [ 0.00,77.40] [ 0.00,77.40] [ 0.00,77.40] [ 0.00,86.24]

90% range [ 0.00, 1.00] [ 0.00, 1.62] [ 0.00,21.45] [ 0.00,40.34] [ 0.00,46.25] [ 0.00,66.19]

avg - std 0.91 - 0.34 0.80 - 0.37 0.80 - 0.37 0.80 - 0.37 0.80 - 0.37 0.81 - 0.35
Baddeley 100% range [ 0.21, 1.67] [ 0.01, 1.58] [ 0.00, 1.58] [ 0.00, 1.58] [ 0.00, 1.58] [ 0.00, 1.58]

90% range [ 0.34, 1.43] [ 0.08, 1.34] [ 0.06, 1.33] [ 0.08, 1.33] [ 0.06, 1.33] [ 0.07, 1.33]
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Fig. 9.11. Experimental results for C3S and noisy synthetic images: (a) every entry of the table consists
of average - standard deviation, [minimum,maximum] and [5% percentile, 95% percentile]; (b,c,d,e) plots of
average values and standard deviations for t = 1..6 for, respectively, CG, OS, US and Baddeley performance
measures; the dashed line corresponds to the median.
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C3S
KLN GEV

t = 2 t = 3 t = 4

CG 99.42 - 2.57 97.29 - 10.89 95.45 - 14.11 92.89 - 11.71 74.24 - 22.70

[75.98,100.00] [22.56,100.00] [22.56,100.00] [27.75,100.00] [ 6.95,96.03]

OS 8.69 - 9.27 8.65 - 9.59 8.39 - 9.09 9.19 - 12.54 30.06 - 20.85

[ 0.00,43.11] [ 0.00,43.11] [ 0.00,43.11] [ 0.00,55.43] [ 1.28,100.00]

US 0.45 - 2.56 2.56 - 10.91 4.36 - 14.14 6.42 - 11.70 23.70 - 23.34

[ 0.00,23.81] [ 0.00,77.40] [ 0.00,77.40] [ 0.00,72.00] [ 1.34,93.03]

Baddeley 0.80 - 0.37 0.80 - 0.37 0.80 - 0.37 1.15 - 0.30 1.67 - 0.27

[ 0.01, 1.58] [ 0.00, 1.58] [ 0.00, 1.58] [ 0.26, 1.88] [ 1.08, 2.45]
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Fig. 9.12. Comparison between C3S, KLN and GEV under normal noise conditions by means of synthetic
images: [top] every entry of the table contains average - standard deviation [minimum,maximum]; [bottom]
plots of average and standard deviation values for t = 3.

Table 9.3. Parameters for KLN during the comparison with C3S by means of synthetic images. (The description
of the parameters corresponds to the one used in the original paper [129, table 6].)

parameter description
value

noise×1 noise×2 noise×3 noise×4 noise×5

window size (for initial grouping) 10 × 10
minimal area size 100 pixels
camera noise 2 3 6 9 15
cylinder width 6 8 16 24 30
minimal intensity 15
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Table 9.4. Parameters for GEV during the comparison with C3S by means of synthetic images.

parameter description value

standard deviation for gaussian derivative
operators

1.0

maximum standard deviation for homoge-
neous regions (normalized between 0 and
255)

5.0

Tlow for hysteresis thresholding 0.9
Thigh for hysteresis thresholding 0.9

set. The parameters of KLN were accordingly modified in order to obtain the best performance under
the different operating conditions (see table 9.3). As for GEV, curiously, it produced better results if
the parameters were left constant and equal to the ones given in table 9.4.

The results for this experiment can be found in table 9.5 and in figure 9.13. This time C3S outper-
forms KLN and GEV under all noise conditions only for t = 2; for the other two values considered for
t, sometimes KLN or even GEV exhibit better performance. On the other hand, C3S and KLN produce
worse results as noise increases, as could be easily guessed. Observe that C3S seems to show a lower
tolerance to noise with regard to C3E, since, as noise is increased, the trend towards lower performance
is steeper for the former; KLN also exhibits this behaviour. GEV, however, is almost insensitive to
noise, yielding, in general, lower performance than the other two but all the time at the same level.
Once again, C3S localizes reflectance transitions clearly better than KLN and GEV.

9.4.2 Experiments with real images

This section comments on the performance of C3S against real images using the same strategy followed
for C3E in chapter 8. That is to say, a varied set of real images for which a ground truth has been
manually generated will be used to provide quantitative information, while results for additional images
will also be provided to illustrate better the performance of C3S. As on other occasions, comparative
results will also be presented, including this time not only KLN and GEV algorithms, but also the
non-physics-based C&M algorithm. On the other hand, this time the missing rate em

R , the false alarm

rate ef
R and the overall performance pR measures by Huang and Dom [106] will also be provided to

help in the comparison and the discussion about the performance of C3S.
Figure 9.14 presents again the six real images for which a ground truth is available, in order to

make easier referring to them throughout this section (they already appeared in figure 8.19).
In a first experiment, the image of figure 9.14(a) was again used as a test bench for showing the

performance evolution of C3S alone as parameter t was varied. As can be observed, this time parameter
t becomes critical since a wrong value leads to severe under-segmentations. In this particular case,
t = 2 results to be the best election since, for t = 3, the amount of under-segmentation experiments a
dramatic increase, while, for t = 1, the amount of over-segmentation attains about 50% of the image.
This fact is confirmed by pR, which achieves its maximum for t = 2.

In a second experiment, C3S, KLN, GEV and C&M were faced against all the images of figure 9.14,
as was also done in chapter 8 to test C3E. As was also commented on that occasion, part of those
images can slightly deviate from the assumed reflection model, but, as before, this is considered useful
since allows observing the degree of tolerance of the different algorithms to the so-called scene noise
introduced in section 4.4.3. The quantitative results of the experiment are shown in table 9.6 and in
figure 9.16. While, again, only parameter t was allowed to take free values for C3S, best results for KLN
and GEV are provided, being the corresponding parameters the ones of, respectively, tables 9.7 and 9.8;
as for C&M, the under-segmentation option was selected in all cases, so that no other parameter needed
to be set up. Finally, lighting parameters which were available for C3S specularity merging stage are
indicated in table 9.9; when they were not available, white light was assumed.

As a global result of this experiment, figures 9.16(a) and (c) show that C3S was able to produce the
results with the largest percentages of correctly grouped pixels and lowest levels of under-segmentation,
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Table 9.5. Comparison between C3S, KLN and GEV under increasing noise conditions by means of synthetic
images: every entry of the table consists of average - standard deviation [minimum,maximum].

noise measure
C3S

KLN GEV
t = 2 t = 3 t = 4

×1

CG 99.42 - 2.57 97.29 - 10.89 95.45 - 14.11 92.89 - 11.71 74.24 - 22.70

[75.98,100.00] [22.56,100.00] [22.56,100.00] [27.75,100.00] [ 6.95,96.03]

OS 8.69 - 9.27 8.65 - 9.59 8.39 - 9.09 9.19 - 12.54 30.06 - 20.85

[ 0.00,43.11] [ 0.00,43.11] [ 0.00,43.11] [ 0.00,55.43] [ 1.28,100.00]

US 0.45 - 2.56 2.56 - 10.91 4.36 - 14.14 6.42 - 11.70 23.70 - 23.34

[ 0.00,23.81] [ 0.00,77.40] [ 0.00,77.40] [ 0.00,72.00] [ 1.34,93.03]

Baddeley 0.80 - 0.37 0.80 - 0.37 0.80 - 0.37 1.15 - 0.30 1.67 - 0.27

[ 0.01, 1.58] [ 0.00, 1.58] [ 0.00, 1.58] [ 0.26, 1.88] [ 1.08, 2.45]

×2

CG 99.00 - 4.81 94.85 - 13.70 92.35 - 16.61 95.55 - 9.93 77.32 - 17.38

[58.49,100.00] [33.67,100.00] [16.71,100.00] [62.91,100.00] [26.46,95.91]

OS 9.58 - 9.50 9.04 - 9.13 9.14 - 9.28 6.13 - 11.03 27.91 - 21.54

[ 0.00,38.61] [ 0.00,37.65] [ 0.00,37.65] [ 0.00,52.98] [ 0.23,100.00]

US 0.90 - 4.83 5.03 - 13.69 7.49 - 16.61 4.21 - 9.77 20.43 - 17.90

[ 0.00,41.49] [ 0.00,66.32] [ 0.00,83.29] [ 0.00,37.00] [ 1.35,72.62]

Baddeley 0.73 - 0.34 0.73 - 0.34 0.73 - 0.34 1.35 - 0.33 1.61 - 0.27

[ 0.00, 1.42] [ 0.00, 1.30] [ 0.00, 1.32] [ 0.04, 1.87] [ 1.07, 2.42]

×3

CG 96.51 - 11.37 86.96 - 21.93 76.01 - 28.38 88.06 - 16.93 79.36 - 15.80

[29.89,100.00] [28.99,100.00] [13.95,100.00] [37.95,100.00] [30.21,95.81]

OS 8.99 - 9.63 8.55 - 9.42 8.53 - 9.42 8.28 - 11.91 30.36 - 19.78

[ 0.00,38.06] [ 0.00,38.06] [ 0.00,38.06] [ 0.00,45.72] [ 1.36,100.00]

US 3.35 - 11.39 12.88 - 21.97 23.65 - 28.60 11.21 - 16.95 18.32 - 16.41

[ 0.00,70.11] [ 0.00,71.01] [ 0.00,86.05] [ 0.00,61.91] [ 1.35,69.10]

Baddeley 0.74 - 0.31 0.75 - 0.31 0.80 - 0.32 1.28 - 0.33 1.66 - 0.29

[ 0.00, 1.52] [ 0.00, 1.35] [ 0.00, 1.64] [ 0.42, 2.24] [ 0.87, 2.65]

×4

CG 90.34 - 21.18 78.21 - 27.98 67.39 - 30.49 71.39 - 30.60 80.75 - 18.29

[18.75,100.00] [ 9.89,100.00] [ 1.84,100.00] [ 0.20,100.00] [ 4.97,96.88]

OS 11.83 - 10.86 11.61 - 10.49 10.76 - 10.16 12.49 - 19.15 34.16 - 22.55

[ 0.00,40.46] [ 0.00,40.46] [ 0.00,40.01] [ 0.00,100.00] [ 0.61,90.96]

US 9.46 - 21.20 21.40 - 28.16 32.19 - 30.66 28.03 - 30.93 16.96 - 18.87

[ 0.00,81.18] [ 0.00,90.11] [ 0.00,98.16] [ 0.00,99.80] [ 0.00,94.89]

Baddeley 0.81 - 0.28 0.83 - 0.29 0.85 - 0.27 1.63 - 0.34 1.77 - 0.35

[ 0.00, 1.33] [ 0.00, 1.44] [ 0.00, 1.51] [ 0.84, 2.56] [ 1.15, 2.87]

×5

CG 86.83 - 20.34 69.35 - 30.99 56.18 - 35.27 63.56 - 27.99 77.59 - 18.82

[29.55,100.00] [ 3.28,100.00] [ 2.86,100.00] [ 7.94,100.00] [19.67,94.49]

OS 9.81 - 9.78 9.54 - 9.62 9.33 - 9.75 18.40 - 17.31 34.35 - 20.10

[ 0.00,37.21] [ 0.00,37.21] [ 0.00,37.21] [ 0.00,64.59] [ 4.63,84.88]

US 12.86 - 20.47 30.29 - 31.22 43.48 - 35.54 35.52 - 28.42 20.15 - 19.37

[ 0.00,70.45] [ 0.00,96.72] [ 0.00,97.14] [ 0.00,92.06] [ 1.70,80.03]

Baddeley 0.81 - 0.31 0.86 - 0.32 0.91 - 0.28 1.55 - 0.43 1.87 - 0.36

[ 0.00, 1.39] [ 0.00, 1.64] [ 0.00, 1.47] [ 0.82, 2.79] [ 1.10, 3.01]
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Fig. 9.13. Comparison between C3S, KLN and GEV under increasing noise conditions by means of synthetic
images: plots of average values for the performance measures.

specially for t = 2. As for the degree of over-segmentation (figure 9.16(b)), both C3S and KLN seem to
show better results than the rest, with more measurements in the leftmost part of the graph. The com-
bined measure by Huang and Dom, pR, however, does not show a preference for any of the algorithms
(figure 9.16(d)). Finally, the accuracy in the localization of reflectance transitions (figure 9.16(e)) seems
to be better in C3S than in the rest, with more measurements for the former in the leftmost part of
the graph again.

A more detailed analysis of the performance data by means of table 9.6 reveals that C3S outperforms
the other algorithms most times (i.e. the best performance measurement is most times in the columns
corresponding to C3S). This can be easily seen through the rows labelled

∑
#best, which accumulate,

for every column of the table, the number of times that algorithm attained the best scoring. As can
be observed, for image 9.14(a), (b) and (c), C3S always gets the largest number of best scorings, while
for (d) is KLN and for (e) is C&M; in the case of image (f), C3S and KLN obtain the same number
of best scorings. In a global count through the lowermost row of the table, TOTAL, C3S also exhibits
the best behaviour.

In a second part of this experiment, a finer tuning of C3S parameters was allowed to observe whether
better quantitative or qualitative results could be obtained. The new parameter values, in case they
led to a better segmentation, are indicated in table 9.10, as well as the performance measures resulting
from this finer tuning; in case no better results were obtained, the table indicates the value of t leading
to a larger number of best scorings. The best segmentations for C3S, KLN, GEV and C&M are then
shown in figures 9.17 and 9.18. As can be observed in table 9.10, in the case of figure 9.14(a), the finer
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(a) (b) (c)

(d) (e) (f)

Fig. 9.14. Real test images and their manually-generated ground truths.

t → 1 2 3 4 5 6

CG 96.62 95.84 64.49 28.60 38.61 50.28

OS 46.09 26.21 9.57 9.58 0.55 0.00

US 3.05 3.82 35.35 71.20 61.24 49.66

em
R 0.10 0.04 0.02 0.02 0.00 0.00

ef
R 0.01 0.01 0.12 0.31 0.26 0.35

pR 0.95 0.97 0.93 0.83 0.87 0.82

Baddeley 1.02 0.80 1.04 1.19 1.68 1.80

(a) (b) (c) (d)

Fig. 9.15. Experimental results for C3S and real image 9.14(a): [top] CG, OS, US, Huang and Dom, and
Baddeley’s measures for t = 1..6; [bottom] results for (a) t=2, (b) t=3, (c) t=4 and (d) t=5.
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Table 9.6. Comparison between C3S, KLN, GEV and C&M by means of real images: x means the best in
the row;

∑
#best is the sum of times that algorithm was best according to a certain measurement, for the

corresponding image; and TOTAL is the number of times that algorithm attained a best scoring.

C3S
KLN GEV C&M

t = 2 t = 3 t = 4

9.14(a)

CG 95.84 64.49 28.60 70.45 42.91 25.60

OS 26.21 9.57 9.58 10.76 59.54 48.17

US 3.82 35.35 71.20 29.16 55.32 74.36
em

R 0.04 0.02 0.02 0.03 0.21 0.18

ef
R 0.01 0.12 0.31 0.11 0.28 0.25

pR 0.97 0.93 0.83 0.93 0.76 0.78
Baddeley 0.80 1.04 1.19 1.50 1.90 1.43∑

#best 5 2 0 0 0 0

9.14(b)

CG 99.30 99.36 99.55 98.91 98.11 92.50

OS 6.67 0.00 0.00 17.42 0.00 69.95

US 0.03 0.00 0.00 0.56 0.00 7.38
em

R 0.01 0.01 0.01 0.06 0.01 0.14

ef
R 0.01 0.01 0.00 0.01 0.02 0.01

pR 0.99 0.99 0.99 0.97 0.99 0.92
Baddeley 0.56 0.50 0.49 1.51 0.63 1.06∑

#best 0 2 7 0 2 0

9.14(c)

CG 89.78 69.91 79.29 43.39 62.54 74.50

OS 57.00 56.77 56.43 63.08 60.42 63.30

US 8.77 29.28 18.01 54.93 34.05 25.10
em

R 0.44 0.33 0.16 0.33 0.20 0.33

ef
R 0.04 0.07 0.11 0.25 0.18 0.07

pR 0.76 0.80 0.86 0.71 0.81 0.80
Baddeley 1.81 1.56 1.42 2.10 1.79 1.60∑

#best 3 0 4 0 0 0

9.14(d)

CG 97.34 96.53 96.61 95.91 85.73 94.29

OS 90.54 88.03 83.57 89.61 83.62 91.92

US 1.08 1.73 1.09 0.00 6.83 5.52
em

R 0.76 0.66 0.64 0.27 0.45 0.76

ef
R 0.02 0.02 0.02 0.04 0.09 0.01

pR 0.61 0.66 0.67 0.84 0.73 0.61
Baddeley 2.38 1.84 1.63 2.21 1.83 2.10∑

#best 1 0 2 3 0 1

9.14(e)

CG 92.41 92.01 89.20 74.25 80.11 96.44

OS 16.62 9.57 9.13 13.01 54.33 13.03

US 6.63 7.03 9.90 25.52 14.38 3.39
em

R 0.07 0.06 0.03 0.05 0.11 0.06

ef
R 0.02 0.02 0.04 0.19 0.09 0.01

pR 0.95 0.96 0.96 0.88 0.90 0.97
Baddeley 0.94 0.77 0.75 1.21 1.43 0.88∑

#best 0 0 3 0 0 4

9.14(f)

CG 92.70 93.13 88.66 27.12 10.77 56.53

OS 96.48 94.45 93.08 66.15 67.73 95.19

US 6.72 6.07 10.92 72.88 89.13 43.32
em

R 0.50 0.49 0.33 0.29 0.29 0.36

ef
R 0.02 0.02 0.04 0.28 0.43 0.15

pR 0.74 0.74 0.82 0.72 0.64 0.74
Baddeley 2.34 2.00 1.62 1.82 1.68 1.77∑

#best 1 2 2 2 0 0

TOTAL 10 6 18 5 2 5
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Fig. 9.16. Comparison between C3S, KLN, GEV and C&M by means of real images: (a) CG, (b) OS, (c)
US, (d) pR and (e) Baddeley. (In every graph, every 1-dimensional axis corresponds to the measures for one
algorithm.)
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Table 9.7. Parameter values for KLN during the experiments with the real images of figure 9.14. (The
description of the parameters corresponds to the one used in the original paper [129, table 6].)

parameter description
image

9.14(a) 9.14(b) 9.14(c) 9.14(d) 9.14(e) 9.14(f)

window size (for initial grouping) 10 × 10
minimal area size 100 100 100 500 100 500
camera noise 3 5 5 5 3 8
cylinder width 6 10 10 10 8 20
minimal intensity 20

Table 9.8. Parameter values for GEV during the experiments with the real images of figure 9.14.

parameter description
image

9.14(a) 9.14(b) 9.14(c) 9.14(d) 9.14(e) 9.14(f)

standard deviation for gaussian
derivative operators

1.0

maximum standard deviation for
homogeneous regions (normalized
between 0 and 255)

5 15 10 10 5 15

Tlow for hysteresis thresholding 0.4
Thigh for hysteresis thresholding 0.6 0.75 0.8 0.8 0.75 0.7

Table 9.9. Estimates of directional illumination strength, Lc
d, for images of figure 9.14.

image 9.14(a) 9.14(b) 9.14(c) 9.14(d) 9.14(e) 9.14(f)

(LR
d , LG

d , LB
d ) (193.00,187.50,169.50) (196.25,160.00,134.75)

not available

(200.00,200.00,200.00) used instead

Table 9.10. Parameters and performance measures for C3S best segmentations of images of figure 9.14.

image parameters CG OS US em
R ef

R pR Baddeley

9.14(a) t1 = 3, t2 = 2, t3 = 3 93.04 25.56 5.56 0.04 0.02 0.97 0.87

9.14(b) t = 4 see table 9.6

9.14(c) t = 4 see table 9.6

9.14(d) t = 4 see table 9.6

9.14(e) t = 3 see table 9.6

9.14(f)
t = 4, τsdim = 3.0

τsplit = 100.0
52.06 70.16 47.59 0.26 0.09 0.83 1.09

tuning improves OS at the expense of worsening CG and Baddeley, what leads to a visually apparent
better segmentation. In the case of figure 9.14(f), it was necessary to increase τsdim, to tolerate the
larger width of specularities of this image, as well as τsplit, because of the non-linearity of matte clusters
of this standard image (this was not necessary, however, for the other standard image of figure 9.14(e),
probably because of the almost non-existent scene curvature). As a consequence, this finer tuning
reduced the level of over-segmentation and improved the combined measure by Huang and Dom, pR,
as well as the localization of reflectance transitions.

In a more qualitative level, figures 9.17 and 9.18 show that C3S is able to produce sound segmen-
tations for the varied set of images considered in the test bench, what means that, although some
performance measures does not situate C3S at the optimum side on some occasions, the visual appear-
ance of the result is quite reasonable. Also observe that C3S produces best results mostly for t = 3 and
t = 4. It is also noteworthy that GEV exhibits serious problems to produce acceptable segmentations
for the images of figure 9.14 except for image 9.14(b). The different trials performed for this algorithm
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throughout this experiment have shown that this is due to the use of the Delaunay triangulation to
steer the splitting stage of the algorithm, but, more importantly, because of the global threshold used
to control the level of regions homogeneity, what prevents the merging stage from leading to low levels
of over- and under-segmentation2. As for KLN, a certain amount of spurious regions tend to appear
in every image; this is, however, not very serious since they could be easily removed by means of the
region usefulness criteria commented on chapter 4. Besides, KLN seems to be in trouble with the spec-
ularities of image 9.14(b); the glossiness of image 9.14(f) is neither well handled by KLN, but this is a
standard image for which there is not any guarantee of corresponding to the model of image formation
assumed by this algorithm. Finally, C&M behaves as expected with this type of images: where scene
curvature becomes noticeable, it tends to produce over-segmentation (figures 9.14(a), (b) and (f)); in
other cases, such as, for instance, the standard house image (figure 9.14(e)) an excellent behaviour is
exhibited.

To finish this section of experimental results with real images, figures 9.20, 9.21, 9.22, and 9.23
show the segmentations produced by, respectively, C3S, KLN, GEV and C&M for the set of real
images shown in figure 9.19, which was also used to test C3E in section 8.9.2. They are reproduced
here again to make the comparison easier. Remember that no ground truth data are available for the
images of this set, so that the discussion will also this time be performed at the qualitative level.

As can be observed from these figures, the behaviour already exhibited by the different algorithms
persists in this experiment. Besides, C3S exhibits a nice performance with the textured cup of image
(d) of figure 9.19, as well as for the standard images lena and sailboat (respectively, images 9.19(g)
and (h)). A shortcoming of C3S can, however, be noticed in the image (f) of figure 9.19, where C3S
is not able to deal with small image details, such as the chain in the upper left-hand corner of the
image, what is clearly overcome by C&M. KLN seems to have problems with the white wall of image
(f) of figure 9.19, as well as with the specularities of image (b); the textured cup, however, is also
relatively well handled by this algorithm. This time GEV also deserves special attention, since it has
been necessary to resort to the RGB colour space to obtain relatively reasonable segmentations for
many of the images of this set; as can be observed in figure 9.22, the results obtained from GEV when
working in the C1C2C3 space were almost useless on some occasions3.

9.5 Conclusions

A curvature-insensitive segmentation algorithm called C3S (Colour Channels Coupling-based Segmen-
tation) has been proposed. Although it is also based on the Dichromatic Reflection Model, like many
other physics-based segmentation algorithms, C3S is radically different to other approaches also mak-
ing use of it. C3S consists of three main stages: the first one scans the image looking for reflectance
transitions, a task that is performed by the already introduced C3E edge detection algorithm; the
second stage takes as a basis the non-thinned edge map produced by C3E to make regions grow until
a first segmentation of the image is achieved; and the third stage refines this former segmentation by
merging those regions whose common border does not make sense from a perceptual point of view.
C3S is, therefore, based on colour channel coupling analysis, which is the fact that makes it different
from other physics-based segmentation approaches. As an added value, typical problems of the classical
approaches are avoided:

2 The author provided experimental results about the adaptability of the Delaunay triangulation to the
geometry of the scene, but the experiment only included synthetic images consisting of objects with mostly
polygonal contours [68]. On the other hand, successful results for a real image of plastic toys were also
provided, which coincides with the good segmentation produced for image 9.14(b). Therefore, it is not
surprising the behaviour observed for GEV throughout this second experiment, given the difficulty of the
images considered against the ones appearing in the paper by Gevers.

3 Note that when GEV works in the RGB space leaves its condition as a physics-based algorithm, since in
this space it does not take into account the physics of image formation to tolerate optical effects such as the
shading. It is through the C1C2C3 and L1L2L3 colour spaces proposed by the author how these effects are
counteracted.
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(a) (b) (c)
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C&M

Fig. 9.17. Best segmentation results for C3S, KLN, GEV and C&M for images in figure 9.14(a-c): the first
row of every algorithm presents the original images with region contours superimposed, while the second row
shows region contours.
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(d) (e) (f)
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C&M

Fig. 9.18. Best segmentation resuls for C3S, KLN, GEV and C&M for images in figure 9.14(d-f): the first
row of every algorithm presents the original images with region contours superimposed, while the second row
shows region contours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9.19. Real images used in the third experiment to compare the performance of C3S, KLN, GEV and
C&M.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9.20. Best segmentation results for C3S corresponding to the third experiment with real images: the first
and third rows are for the original images with region contours superimposed, while the second and fourth
rows are for the region contours only.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9.21. Best segmentation results for KLN corresponding to the third experiment with real images: the
first and third rows are for the original images with region contours superimposed, while the second and fourth
rows are for the region contours only.

• there is no need to numerically estimate scene material reflectances, which becomes quite difficult
if not impossible as soon as the image formation model incorporates complex optical phenomena
such as specularities or inter-reflections;

• pixel clustering in colour space is not needed, so that deviations of the cluster shapes due to image
noise do not influence the segmentation process; and

• numerical instabilities of photometric invariants due to their formulation or due to noise are
avoided.

Experimental results for noisy synthetic and real images corresponding to a varied set of scenes have
been provided and discussed. C3S has been compared with two well-known physics-based segmentation
algorithms, one by Klinker et al. [129] (KLN) and the other one by Gevers [68] (GEV). The non-physics-
based segmentation algorithm by Comaniciu and Meer [29] (C&M) has also been incorporated during
the comparison with real images. Several conclusions can be drawn from the results of the different
experiments performed:

• The scene constraints concerning the fulfillment of the coupling properties were not so hard as
seemed at first sight, what could already be observed in the experimental results of C3E.

• The edge maps produced by C3E have resulted to be useful to obtain adequate segmentations of
images. In fact, C3S has proved to be able to deal with scenes with glossy curved objects and
different surface materials.

• Despite the a priori large number of parameters of C3S, quite acceptable results have been obtained
reducing them to just the number of intensity uncertainties t used to counteract image noise. It has
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(a) (b) (c) (d)
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Fig. 9.22. Best segmentation results for GEV corresponding to the third experiment with real images: 1st,
3rd, 5th and 7th rows are for the original images with region contours superimposed, while 2nd, 4th, 6th and
8th rows are for the region contours only.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9.23. Best segmentation results for C&M corresponding to the third experiment with real images: the
first and third rows are for the original images with region contours superimposed, while the second and fourth
rows are for the region contours only.

been observed that for most images t = 3 or t = 4 produced sound results. A finer tuning, however,
can improve the quality of the segmentation in some cases.

• Under normal noise conditions, C3S has shown a better performance than the other algorithms for
synthetic images. When processing real images, the differences are narrower, but still C3S produces
the best results on most occasions, independently of the type of scene.

• The tolerance to noise of C3S has found to be dependent on the number of uncertainties. In
particular, referring to the classification aspect of segmentation, C3S with t = 2 has shown to
be the algorithm with the largest tolerance, but for larger values of t KLN has resulted to be
better than C3S. On the other hand, regarding the localization of reflectance transitions, C3S has
performed better than the other segmentation algorithms irrespective of t. GEV has shown the
worst performance, but, at the same time, this keeps almost the same as the noise contaminating
the image is increased.

• Intensity uncertainties have proved to be useful in another computer vision task.
• The evaluation of segmentation performance by means of CG, OS and US has resulted satisfactory,

although Huang and Dom performance measures em
R , ef

R and pR have found to be useful as secondary
measures in some experiments.

On the other hand, some segmentation mistakes have been detected when scenes contained small
details. On those cases, C3S tends to join those small details with the region surrounding them. This
behaviour stems from the edge-finding nature of C3S because of the thickness of edges in the edge map.
In this sense, a pixel-based segmentation approach is more likely to succeed. Therefore, an approach
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combining the advantages of C3S and a pixel-based segmentation strategy could constitute a good
source of improvement in a future work.

As for the executions times, both KLN and C&M have needed on the order of 1-2 minutes to
produce a segmentation result, while in the case of C3S and GEV the execution time has oscillated
between less than a minute and up to 15 minutes depending on the image (all the executions were
performed over a Pentium IV @ 3GHz machine). This is because both algorithms include iterative
processes which must converge to yield a segmentation. In the case of GEV, the splitting stage implies
considering several triangulation scenarios for every edge point in order to take the triangulation best
describing the scene, so that the larger the number of edges, the larger the execution time. In the case
of C3S, although the computation of the edge map reduces to very simple operations between a pixel
and its neighbourhood and therefore does mean a very reduced execution time —around one second on
most images, as was already commented on in chapter 8—, the growing and merging stages, above all
the latter, involve a large amount of more or less complex operations. In particular, the merging stage
computation time depends on the number of evaluations of ζpcm between pairs of regions. The worst
case happens when the number of final regions is low, but the point of departure, produced by the
region growing stage, consists of an important amount of regions. This is the typical case for images
of natural scenes. A supporting hardware could, probably, alleviate the problem.
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Conclusions and Future Work

This chapter finishes the main body of this documentation by presenting and discussing a set of
conclusions which the work performed have led to. Further work and lines of research are also advanced.

10.1 Conclusions

This section gathers and summarizes the different sets of conclusions which have been drawn from the
different contributions of this thesis and which have been provided at the end of the corresponding
chapters of this documentation. By way of first summary of the work performed, figure 10.1 replicates
the graph of figure 4.7 labelling each component with the name and chapter of the related contribution
of this thesis.
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Fig. 10.1. Diagram of the performance evaluation setup proposed in chapter 4 labelled with the contributions
of this thesis.
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Table 10.1. Incorporation of IS2R, C3E and C3S to the summary of physics-based segmentation approaches
of table 3.1.

alg GL CO A B I S IR WI NIR IWC out GA PB more ...

IS2R X X X X X IS region reflectance use of intensity un-
certainties; set of im-
ages limited

C3E X X X X EM edge coupling use of intensity un-
certainties; NIR and
proportional ambient
illumination, but not
essential

C3S X X X X X IS region coupling use of intensity un-
certainties; NIR and
proportional ambient
illumination, but not
essential

In the following, conclusions which can be drawn from a global point of view are distinguished from
particular conclusions for every contribution of this thesis, which, in turn, are put in sections apart.
Besides, the particular conclusions are, to a certain extent, given in the form of summaries of the ones
given at the end of the different chapters, with the aim of emphasizing the most relevant facts.

10.1.1 Global conclusions

From a global point of view, this thesis has achieved the following objectives:

(1) The segmentation problem has been studied from within the physics-based vision paradigm, con-
tributing with a quite exhaustive review of image segmentation and edge detection approaches
agreeing with the same paradigm. The main strategies have also been identified and used to de-
velop a comprehensive taxonomy of physics-based segmentation approaches. As a result of the
analysis, several shortcomings of the so far proposed algorithms have been enumerated, which, on
the other hand, have confirmed the validity and the coherence of the goals of this thesis.

(2) Several approaches have been explored and, as a consequence, three algorithms named IS2R, C3E
and C3S have resulted, whose main features can be found summarized in table 10.1 following the
same structure as the table introduced in chapter 3 to highlight the characteristics of the algorithms
considered as the state of the art. In the table, C3E and C3S have been considered to be able to
handle also gray-level images, although no results have been given, because, from a theoretical level,
their capabilities in this respect have not been cut off. On the other hand, a new category called
coupling has been created for both algorithms since none of the previously introduced classes are
fully appropriate because:
– no reflectance is estimated,
– there is not an analysis of clusters in any colour space,
– they are not based on studying the continuity of the image surface, and, finally,
– no invariants are used.

(3) All three algorithms:
– consider ambient illumination since their theoretical inception;
– ensure the full coverage of reflectance transitions, at least from a theoretical point of view;
– work at the signal level, except for the assumption of smooth surfaces; and
– adapt the respective thresholds on the basis of intensity uncertainties.

(4) The different proposals have been tested from different points of view:
– using synthetic images with and without noise to test, respectively, the theoretical correctness

of the algorithm and their degree of robustness;
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– using real images of a varied set of scenes and different surface materials to confirm their validity
in less controlled conditions; and

– comparing them with other well-known image segmentation and edge detection algorithms.
Furthermore, it is worth noting the fact that the real images used in the experiments are more com-
plex than the ones that have traditionally been used by researchers in physics-based segmentation.
In particular, images of natural scenes have been incorporated into the sets of test images.
During the experiments, C3E and C3S have compared favourably with three physics-based and
two non-physics-based recognized methods belonging to the current state of the art. As for IS2R,
it has become patent its theoretical correctness but also a limited scope because of the approach
followed, which implies, among others, a perfect accommodation to the model of image formation
assumed. Nevertheless, the experimental results showed it is able to deal with images which which
other algorithms have serious problems. Finally, IS2R presents the added value of also providing
shape information apart from the expected segmentation results.

(5) Apart from the image segmentation and edge detection algorithms, this thesis has contributed
with several methods for determining the lighting parameters of the scene (OPAM/CPAM -
TEAV/TECA) and an algorithm for estimating the parameters of a noise model related with
the operation of a CCD camera (R2CIU). On the one hand, OPAM/CPAM-TEAV/TECA have
proved useful for the segmentation algorithms making use of it: IS2R, which needed both the di-
rection of the light source and the chromatic information of the ambient and directional sources
of light, and C3S, which just needed the chromatic values of the directional light source for the
detection of specularities. On the other hand, R2CIU has resulted useful not only for estimating
the parameters of a noise model related with the operation of a CCD camera, but also for com-
puting intensity uncertainties to be incorporated in the different segmentation and edge detection
algorithms proposed.

10.1.2 Conclusions for chapter 4

Chapter 4 proposed a framework for image segmentation and edge detection, together with an ex-
perimental setup aiming at optimizing the conditions of operation for physics-based segmentation
algorithms. At the end of this thesis, this setup can be said to have satisfied the expectations put on
it, since it has allowed to successfully develop and test physics-based algorithms, what is proved by
the agreement between the experiments with synthetic images and the experiments with real images.

Besides, this chapter proposed three measures of performance for image segmentation algorithms
called CG, OS and US. Throughout the different experiments in which they have been used, they have
proved to behave satisfactorily, although, in some experiments, their combination with the Huang and
Dom performance measures em

R , ef
R and pR has also found to be useful.

10.1.3 Conclusions for chapter 5

A total of four methods for estimating scene lighting parameters have been presented throughout chap-
ter 5. Two of them assume orthographic projection (OPAM) while the other two assume perspective
projection (CPAM). Within every projection case, two algorithms for estimating the lighting orienta-
tion have been discussed and compared, TEAV and TECA, which differ in the way how the tilt of
the illumination is determined. In all cases, the corresponding estimation method has been developed
in connection with the camera noise model presented in section 2.4.4, which has allowed identifying
the noise sources corrupting digital pixel values in order to counteract their effects throughout the
estimation process.

An extensive battery of tests has been carried out in order to characterize as accurately as possible
the scope of application of the lighting parameters estimation methods presented. More precisely: (1) all
the variants have been tested against noiseless synthetic images under different geometrical conditions;
(2) several robustness tests have been conducted, which included images with Gaussian noise, changes
in the lighting strengths maintaining the lighting direction constant and changes in the position of the
calibration object keeping constant the lighting strength; and, finally, (3) all the methods have been
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compared with other well-known estimators with similar features and scope. As a general conclusion,
the combination CPAM-TEAV has proved to be the best election, although the other variants provided
estimations which could also be considered quite accurate. The combinations with OPAM require to
respect the fact that orthographic projection are assumed and, therefore, the closer the calibration
sphere to the optical axis, the better.

Despite the limitations of the lighting estimation methods proposed in chapter 5 as for the number
of light sources, several advantages make them attractive in single-source cases against multi-source
methods: (1) in general, its complexity is lower than the multi-source methods, (2) a previous geometric
calibration of the camera is not required and the estimation of the surface normal vectors of the
calibration sphere is embedded within the method itself, (3) all the image pixels belonging to the sphere
projection are used in the estimation of the lighting parameters, and (4) no threshold or parameter
needs to be set up.

Finally, the combination of CPAM-TEAV with a segmentation algorithm has produced satisfactory
results. In particular, it is noteworthy the behaviour of the lighting estimation method in reference to
the estimates produced in chapter 7, where very consistent estimations resulted when analyzing the
same conditions of illumination over gray-level and colour images (figures 7.12 and 7.16, and figures 7.18
and 7.21).

10.1.4 Conclusions for chapter 6

Chapter 6 proposes an algorithm called R2CIU (Robust Radiometric Calibration and Intensity Uncer-
tainty estimation) for radiometric camera calibration. It allows estimating the distribution parameters
of the noise sources of the camera noise model proposed by Healey and Kondepudy in [93]. Besides, two
applications of the radiometric calibration of CCD cameras have also been discussed, namely synthesis
of noisy images for testing purposes, and estimation of intensity uncertainties, both according to the
radiometric performance of a particular camera, or, in other words, a particular set of camera noise
model parameters. Both have proved to be useful within the image segmentation and edge detection
framework proposed in chapter 4.

More precisely, R2CIU is based on uniform reflectance calibration cards. Besides, the fact that all
the pixels of the captured image can participate in the estimation makes R2CIU a robust estimator of
the noise model parameters. It has been compared against itself using two sets of calibration images
taken at different time instants with slight deviations in the parameters estimated for both sets. It also
compares favourably with the algorithm of Healey and Kondepudy [93], showing a similar behaviour
but a simpler use.

10.1.5 Conclusions for chapter 7

This chapter has presented a segmentation algorithm called IS2R (Image Segmentation by Scene Re-
construction) insensitive to scene curvature. To this end, reflectance values of the scene objects are
estimated by means of singular points and the scene shape is progressively reconstructed in order to
predict intensity values to be compared with real intensity values in a so-called consistency test, what
allows making a decision about whether a pixel must join a certain region or not. Experimental results
for both synthetic and real images have been provided.

During the experiments performed, both colour and gray-level images have been considered and no
difference in performance has been noticed. On the other hand, algorithm parameters have resulted to
be quite stable, except those related with spatial dimensions, specially for the determination of singular
points. In this case, some fine tuning has been needed.

Although the experimental results prove IS2R is able to deal with scenes with curved objects,
its general applicability has been compromised by the limited sort of images which can correctly be
segmented. In particular, IS2R is not very tolerant to deviations of the theoretical image formation
model, namely specularities, reflectance non-uniformities and small details. One of the clear points
for this limitation is the SFS algorithm which is embedded in IS2R for estimating shape information.
Nevertheless, the very basis of IS2R is also the cause for its low performance in certain cases, since the
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use of the prediction of the intensity values means a strong agreement must exist between images and
the image formation model, what not always takes place.

10.1.6 Conclusions for chapter 8

A study about what happens at the signal level when reflectance changes take place has been presented
in chapter 8. As it has been shown, colour channels keep coupled in uniform reflectance areas, while
the coupling is broken in a number of ways at pixels involved in reflectance transitions. This coupling
has been expressed in the form of a set of properties which are fulfilled by all the pixels corresponding
to the same surface material (i.e. same reflectance), so that, when any of them is not satisfied, the
only possible cause of the unfulfillment reduces to a change in reflectance. The satisfaction of those
properties has been studied for different instantiations of the image formation model, which have
allowed determining the constraints to be met by the scene so that these properties can be effectively
used to locate reflectance transitions. The coupling properties have in turn been used to derive a
number of types of edges which can be easily detected by analyzing the way how the colour channels
are related among them. This study has finally derived in the development of, on the one hand, an
edge detector, and, on the other hand, an image segmentation algorithm, both of which do not exhibit
the typical drawbacks of some of the approaches surveyed in chapter 3:

• there is no need to numerically estimate scene material reflectances, what becomes quite difficult
if not impossible as soon as the image formation model incorporates complex optical phenomena
such as specularities or inter-reflections;

• pixel clustering in colour space is not needed, so that deviations of the cluster shapes due to image
noise do not influence the segmentation process; and

• numerical instabilities of photometric invariants due to their formulation or due to noise are
avoided.

Chapter 8 has also proposed the edge detector named C3E (Colour Channel Coupling-based Edge
detection) rooted on the results of the colour channel coupling study. Experiments with synthetic and
real images have been presented, showing the power of the approach for dealing with scenes with
curved objects and different surface materials. However, in general, it is not tolerant to highlights.
This means that, from a theoretical point of view, it is not possible to avoid specularity edges in all
cases, although it is clear that they appear as a result of the colour channel coupling analysis only
under some circumstances.

Besides, C3E has been compared in a number of tests with the physics-based edge detection al-
gorithm by Stokman and Gevers [79, 262] and with the recognized non-physics-based edge detection
algorithm by Meer and Georgescu [168]. From a global point of view, C3E can be said to exhibit a
good tolerance to noise thanks to the use of intensity uncertainties for threshold selection and it has
also outperformed the other two algorithms involved in the comparison.

10.1.7 Conclusions for chapter 9

As a natural continuation of chapter 8, chapter 9 has proposed a curvature-insensitive segmentation
algorithm called C3S (Colour Channels Coupling-based Segmentation). Although it is also based on
the Dichromatic Reflection Model, like many other physics-based segmentation algorithms, C3S is
radically different to other approaches also making use of it because of its roots on colour channel
coupling analysis. C3S consists of three main stages: the first one scans the image looking for reflectance
transitions, what is performed by the already introduced C3E edge detection algorithm; the second
stage takes as a basis the non-thinned edge map produced by C3E to make regions grow until a first
segmentation of the image is achieved; and the third stage refines this former segmentation by merging
those regions whose common border does not make sense from a perceptual point of view.

Experimental results for noisy synthetic and real images corresponding to a varied set of scenes
have been provided and discussed. C3S has been compared with two well-known physics-based segmen-
tation algorithms, one by Klinker et al. [129] and the other one by Gevers [68]. The non-physics-based
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segmentation algorithm by Comaniciu and meer [29] has also been incorporated during the comparison
with real images. Among the several conclusions which can be drawn from the results of the different
experiments performed, it is worth noting the general better performance of C3S with regard to the
other algorithms when processing both noisy synthetic images and real images. On the other hand,
some segmentation mistakes have been detected when scenes contained small details. On those cases,
C3S tends to join those small details with the region surrounding them.

10.2 Future Work

This thesis has focused on the image segmentation problem and, after the consideration of an ample
set of questions, have resulted in several contributions, some of them directly related and some others
indirectly related with new segmentation approaches. During both the time of development and the
experiments, a number of hints for improvement and newer ideas have arisen. While the former refer to a
set of misbehaviours which have been detected in the algorithms, the latter correspond to new strategies
which, at least at the moment of inception, intuition said they could lead to better performance or to
extend the scope of application. Both kinds of suggestions are invitations to follow this research line
in the future. They can be found summarized in the following:

Regarding the lighting estimation methods CPAM/OPAM-TEAV/TECA ...
• The most relevant drawback of these methods is that they assume a model of illumination

consisting of an only directional light source. On some occasions, this model is enough because,
taking as an example the particular case of this thesis, the segmentation algorithm making use
of the estimations assumes the same sort of illumination. However, a model with a larger number
of directional light sources would allow extending the scope of application of the segmentation
algorithm, in case it could effectively benefit from the enhanced model. In the case of this thesis,
this would not be specially difficult provided that the shape estimation stage of IS2R was able
to cope with the new model. In this sense, the incorporation of, for instance, the SFS method
of [279] should be considered.

Regarding R2CIU ...
• The imperfections of the camera optics are not taken into account in R2CIU. However, during

the estimation of the noise parameter values, a special care has been taken to avoid the effects of
such imperfections by reducing the population of image cells involved in the process to a central
window of 100×100 pixels and by properly focusing the camera. Therefore, although computing
the estimates from about 10,000 cells is statistically meaningful enough, it would be interesting
to be able to include all the cells of the CCD in the computation of the noise parameters.
Furthermore, the uncertainties estimated for every intensity level of every colour channel do
not include the alterations coming from the optics. However, it has to be proved whether a
new version of R2CIU incorporating an enhanced noise model including the imperfections of
the optics would significantly improve the quality of the uncertainties estimated.

• Due to their low cost and enhanced functionality, optical CMOS imaging sensors are being
incorporated in every time more vision cameras. Although there is a certain overlapping be-
tween CMOS- and CCD-based imaging devices, the operation of the new sensor should be
carefully studied and an adapted noise model suggested, together with, perhaps, new methods
for estimating the parameters of the resulting noise models.

Regarding C3S and C3E ...
• As has been mentioned several times, C3S and C3E show a tendency to miss some small details

in the image. This is because of the thickness of the edges resulting from the analysis of the
coupling between colour channels. The generation of edges of such thickness is coherent with
the fact that, because of camera aliasing, the reflectance transition spans along several pixels.
Nevertheless, though taking into account that those pixels are not valid in the sense that violate
at least one of the coupling properties, a refinement step for locating precisely the point where
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the reflectance change takes place would probably reduce the incidence of thick edges in the
posterior segmentation and edge detection results.

• LOG zero-crossings are detected in C3S and C3E working on every colour channel indepen-
dently. This fact leads to the detection of the same zero-crossing at adjacent pixels in the same
scanline because of noise, what contributes to the edge thickness in the edge map. Di Zenzo
suggested in [37] a colour gradient which could be incorporated in C3E to alleviate this prob-
lem. Nevertheless, a careful analysis should follow in order to be sure no edges are missed with
regard to the previous approach.

• Although the computation times of the edge map for C3E are quite reduced, the ones for C3S
can be quite large for some images. As was already indicated in chapter 9, this was mostly due
to the application of the PCM algorithm during the merging stage. Therefore, the optimization
of this algorithm or its replacement by another one with similar performance would be an
interesting improvement.

• The simplicity in the calculations needed to generate the edge maps of C3E suggests the idea of
implementing in hardware this part of C3S. This would allow obtaining edge maps for real-time
applications and also would reduce the execution time of C3S.

• The best way to extend the scope of application of a physics-based segmentation algorithm
is to extend the model of image formation. Clearly, although both C3S and C3E have shown
their power over a varied set of scenes, there is still more place for enhancements. On the
one hand, the models considered in this thesis have all the time assumed non-attenuating
propagation media, while, for instance, in an underwater environment, this is of little use. On
the other hand, surfaces have been considered opaque and non-emissive, so that effects such
as transparency, incandescence, fluoroscence or fosforescence have not been taken into account.
Finally, reflectance has been required to be uniform for a certainly large amount of pixels,
which would be violated in scenes with textured objects. All these modifications of the working
conditions would certainly mean reconsider the approaches followed in C3S and C3E, specially
the tolerance to textured objects.

• Several researchers have shown the power of integrating region and boundary information to
compute the segmentation of an image [53, 172, 173]. In a certain way, this integration is also
done by C3S in the sense that the point of departure for the segmentation is an edge map,
and, once it has been computed, the region information is the protagonist during the rest of
the process. However, the techniques mentioned in [53, 172, 173] and others published with
posteriority could perhaps provide further improvements in C3S performance.
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Multi-line Least Squares Fitting

A.1 Common-Origin Multi-Line Least Squares Fitting

Given M sets of points (f(xk,i), yk,i), k ∈ {1..M}, i ∈ {1..N}, where the sets are known to lie in M
possibly different straight lines sharing a common origin (i.e. the same intercept with the Y axis),
the best slopes ak and the best common origin b, in the least squares sense, can be expressed as the
minimizers of:

Φ =
∑

i

(
y1,i − (a1f(x1,i) + b)

σ1,i

)2

+ · · · +
∑

i

(
yM,i − (aMf(xM,i) + b)

σM,i

)2

, (A.1)

where σk,i is the uncertainty in yk,i.
For simplicity, but without compromising the generality of the method, the problem will be re-

stricted in the following to the case of 3 sets of data (M = 3). In this way, equation A.1 can be
expressed in matrix form as:

Φ =




Y︷ ︸︸ ︷


y1,1

σ1,1

...
y1,N

σ1,N
y2,1

σ2,1

...
y2,N

σ2,N
y3,1

σ3,1

...
y3,N

σ3,N




−

X︷ ︸︸ ︷


f(x1,1)
σ1,1

0 0 1
σ1,1

...
f(x1,N )

σ1,N
0 0 1

σ1,N

0
f(x2,1)

σ2,1
0 1

σ2,1

...

0
f(x2,N )

σ2,N
0 1

σ2,N

0 0
f(x3,1)

σ3,1

1
σ3,1

...

0 0
f(x3,N )

σ3,N

1
σ3,N




p︷ ︸︸ ︷


a1

a2

a3

b







2

. (A.2)

As usual, the minimum of Φ is obtained differenciating Φ respect to p, equating to 0 and solving
the resultant linear system:

∂Φ

∂p
= 2XT (Y − Xp) = 0 ⇒

A︷ ︸︸ ︷(
XT X

)
p =

B︷ ︸︸ ︷
XT Y (A.3)

where:
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A =




∑ f2(x1,i)

σ2
1,i

0 0
∑ f(x1,i)

σ2
1,i

0
∑ f2(x2,i)

σ2
2,i

0
∑ f(x2,i)

σ2
2,i

0 0
∑ f2(x3,i)

σ2
3,i

∑ f(x3,i)

σ2
3,i∑ f(x1,i)

σ2
1,i

∑ f(x2,i)

σ2
2,i

∑ f(x3,i)

σ2
3,i

(∑
1

σ2
1,i

+
∑

1
σ2
2,i

+
∑

1
σ2
3,i

)




B =




∑ f(x1,i)y1,i

σ2
1,i∑ f(x2,i)y2,i

σ2
2,i∑ f(x3,i)y3,i

σ2
3,i(∑ y1,i

σ2
1,i

+
∑ y2,i

σ2
2,i

+
∑ y3,i

σ2
3,i

)




(A.4)

The uncertainties in the straight lines parameters can now be determined by error propagation of
σk,i through the expressions leading to a1, a2, a3 and b [272]. By way of example, using Cramer’s rule
for calculating b, the uncertainty in b, σb, can be shown to satisfy:

σ2
b =

(
A22A33

N∑

i=1

(
A11

1

σ1,i
− A14

f(x1,i)

σ1,i

))2

|A|−2

+

(
A11A33

N∑

i=1

(
A22

1

σ2,i
− A24

f(x2,i)

σ2,i

))2

|A|−2

+

(
A11A22

N∑

i=1

(
A33

1

σ3,i
− A34

f(x3,i)

σ3,i

))2

|A|−2 (A.5)

A.2 Common-Slope Multi-Line Least Squares Fitting

Given M sets of points (f(xk,i), yk,i), k ∈ {1..M}, i ∈ {1..N}, where the sets are known to lie in M
possibly different straight lines sharing a common slope, the best slope a and the best intercepts with
the Y axis bk, in the least squares sense, can be expressed as the minimizers of:

Φ =
∑

i

(
y1,i − (af(x1,i) + b1)

σ1,i

)2

+ · · · +
∑

i

(
yM,i − (af(xM,i) + bM )

σM,i

)2

, (A.6)

where σk,i is the uncertainty in yk,i.
For simplicity, but without compromising the generality of the method, the problem will be re-

stricted in the following to the case of 3 sets of data (M = 3). In this way, equation A.6 can be
expressed in matrix form as:

Φ =




Y︷ ︸︸ ︷


y1,1

σ1,1

...
y1,N

σ1,1
y2,1

σ2,1

...
y2,N

σ2,1
y3,1

σ3,1

...
y3,N

σ3,1




−

X︷ ︸︸ ︷


f(x1,1)
σ1,1

1
σ1,1

0 0
...

f(x1,N )
σ1,N

1
σ1,N

0 0
f(x2,1)

σ2,1
0 1

σ2,1
0

...
f(x2,N )

σ2,N
0 1

σ2,N
0

f(x3,1)
σ3,1

0 0 1
σ3,1

...
f(x3,N )

σ3,N
0 0 1

σ3,N




p︷ ︸︸ ︷


a
b1

b2

b3







2

. (A.7)
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As usual, the minimum of Φ is obtained differenciating Φ respect to p, equating to 0 and solving
the resultant linear system:

∂Φ

∂p
= 2XT (Y − Xp) = 0 ⇒

A︷ ︸︸ ︷(
XT X

)
p =

B︷ ︸︸ ︷
XT Y (A.8)

where:

A =




(∑ f2(x1,i)

σ2
1,i

+
∑ f2(x2,i)

σ2
2,i

+
∑ f2(x3,i)

σ2
3,i

) ∑ f(x1,i)

σ2
1,i

∑ f(x2,i)

σ2
2,i

∑ f(x3,i)

σ2
3,i∑ f(x1,i)

σ2
1,i

∑
1

σ2
1,i

0 0
∑ f(x2,i)

σ2
2,i

0
∑

1
σ2
2,i

0
∑ f(x3,i)

σ2
3,i

0 0
∑

1
σ2
3,i




B =




(∑ f(x1,i)y1,i

σ2
1,i

+
∑ f(x2,i)y2,i

σ2
2,i

+
∑ f(x3,i)y3,i

σ2
3,i

)
∑ y1,i

σ2
1,i∑ y2,i

σ2
2,i∑ y3,i

σ2
3,i




(A.9)

The uncertainties in the straight lines parameters can now be determined by error propagation of
σk,i through the expressions leading to a, b1, b2 and b3 [272]. By way of example, using Cramer’s rule
for calculating a, the uncertainty in a, σa, can be shown to satisfy:

σ2
a =

(
A33A44

N∑

i=1

(
A22

f(x1,i)

σ1,i
− A12

1

σ1,i

))2

|A|−2

+

(
A22A44

N∑

i=1

(
A33

f(x2,i)

σ2,i
− A13

1

σ2,i

))2

|A|−2

+

(
A22A33

N∑

i=1

(
A44

f(x3,i)

σ3,i
− A14

1

σ3,i

))2

|A|−2 (A.10)





B

Proofs of chapter 8

Proof of proposition 8.1.

On the one hand:

∆D1 = Dc1(i1, j1) − Dc2(i1, j1) = mb(i1, j1) (Cc1

b − Cc2

b ) = mb(i1, j1)∆Cb

Analogously:

∆D2 = Dc1(i2, j2) − Dc2(i2, j2) = mb(i2, j2) (Cc1

b − Cc2

b ) = mb(i2, j2)∆Cb

Therefore, taking into account that mb(i, j) ≥ 0,∀(i, j), ∆D1 ≥ 0 if and only if ∆D2 ≥ 0, and
the same applies for ≤. Notice the sign of both ∆D1 and ∆D2 coincide with the sign of ∆Cb, which
is exclusively dependent on the particular surface material and the colour of the illuminant, which is
assumed to be constant throughout the scene.

2

Proof of proposition 8.2.

Taking into account the hypotheses:

(
dDc1(i, j)

dξ

)
= m′

b(i, j)C
c1

b

(
dDc2(i, j)

dξ

)
= m′

b(i, j)C
c2

b ,

where m′
b(i, j) is the first-order derivative along direction ξ of mb(i, j).

Therefore, the sign of both
(

dDc1 (i,j)
dξ

)
and

(
dDc2 (i,j)

dξ

)
depend exclusively on the sign of m′

b(i, j)

as Cc1

b ≥ 0 and Cc2

b ≥ 0.
2

Proof of proposition 8.3.

First, let us introduce the following notation:

∆mb = mb(i1, j1) − mb(i2, j2)

∆Cb = Cc1

b − Cc2

b

Now, let us consider cases (1) and (2):

(1)(⇒) Let us prove first from left to right the double implication. Two cases have to be considered:

(a)

{
Dc1(i1, j1) ≥ Dc1(i2, j2) ⇒ mb(i1, j1) ≥ mb(i2, j2) ⇒ ∆mb ≥ 0
Dc1(i1, j1) ≥ Dc2(i1, j1) ⇒ Cc1

b ≥ Cc2

b ⇒ ∆Cb ≥ 0
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Therefore:

(Dc1(i1, j1) − Dc2(i1, j1)) − (Dc1(i2, j2) − Dc2(i2, j2)) = ∆mb∆Cb ≥ 0

(b)

{
Dc1(i1, j1) ≤ Dc1(i2, j2) ⇒ mb(i1, j1) ≤ mb(i2, j2) ⇒ ∆mb ≤ 0
Dc1(i1, j1) ≤ Dc2(i1, j1) ⇒ Cc1

b ≤ Cc2

b ⇒ ∆Cb ≤ 0

Therefore:

(Dc1(i1, j1) − Dc2(i1, j1)) − (Dc1(i2, j2) − Dc2(i2, j2)) = ∆mb∆Cb ≥ 0

(⇐) Let us prove now from right to left the double implication:

(Dc1(i1, j1) − Dc2(i1, j1)) − (Dc1(i2, j2) − Dc2(i2, j2)) = ∆mb∆Cb ≥ 0

⇒





(a)

{
∆mb ≥ 0 ⇒ Dc1(i1, j1) ≥ Dc1(i2, j2)
∆Cb ≥ 0 ⇒ Dc1(i1, j1) ≥ Dc2(i1, j1)

or

(b)

{
∆mb ≤ 0 ⇒ Dc1(i1, j1) ≤ Dc1(i2, j2)
∆Cb ≤ 0 ⇒ Dc1(i1, j1) ≤ Dc2(i1, j1)

(2)(⇒) Let us prove first from left to right the double implication. Two cases have to be considered:

(a)

{
Dc1(i1, j1) ≥ Dc1(i2, j2) ⇒ mb(i1, j1) ≥ mb(i2, j2) ⇒ ∆mb ≥ 0
Dc1(i1, j1) ≤ Dc2(i1, j1) ⇒ Cc1

b ≤ Cc2

b ⇒ ∆Cb ≤ 0

Therefore:

(Dc1(i1, j1) − Dc2(i1, j1)) − (Dc1(i2, j2) − Dc2(i2, j2)) = ∆mb∆Cb ≤ 0

(b)

{
Dc1(i1, j1) ≤ Dc1(i2, j2) ⇒ mb(i1, j1) ≤ mb(i2, j2) ⇒ ∆mb ≤ 0
Dc1(i1, j1) ≥ Dc2(i1, j1) ⇒ Cc1

b ≥ Cc2

b ⇒ ∆Cb ≥ 0

Therefore:

(Dc1(i1, j1) − Dc2(i1, j1)) − (Dc1(i2, j2) − Dc2(i2, j2)) = ∆mb∆Cb ≤ 0

(⇐) Let us prove now from right to left the double implication:

(Dc1(i1, j1) − Dc2(i1, j1)) − (Dc1(i2, j2) − Dc2(i2, j2)) = ∆mb∆Cb ≤ 0

⇒





(a)

{
∆mb ≥ 0 ⇒ Dc1(i1, j1) ≥ Dc1(i2, j2)
∆Cb ≤ 0 ⇒ Dc1(i1, j1) ≤ Dc2(i1, j1)

or

(b)

{
∆mb ≤ 0 ⇒ Dc1(i1, j1) ≤ Dc1(i2, j2)
∆Cb ≥ 0 ⇒ Dc1(i1, j1) ≥ Dc2(i1, j1)

2

Proof of lemma 8.4.

On the one hand, if interface reflection is not involved in the reflected light, ambient reflectance
simplifies to body reflectance and thus:

Cc1
a − Cc2

a = qc1
0

∫

Λ

La(λ)ρb(λ)τ c1(λ)s(λ) dλ − qc2
0

∫

Λ

La(λ)ρb(λ)τ c2(λ)s(λ) dλ

= α

(
qc1
0

∫

Λ

Ld(λ)ρb(λ)τ c1(λ)s(λ) dλ − qc2
0

∫

Λ

Ld(λ)ρb(λ)τ c2(λ)s(λ) dλ

)

On the other hand:
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Cc1

b − Cc2

b = qc1
0

∫

Λ

Ld(λ)ρb(λ)τ c1(λ)s(λ) dλ − qc2
0

∫

Λ

Ld(λ)ρb(λ)τ c2(λ)s(λ) dλ

Therefore, given that α ≥ 0, Cc1
a − Cc2

a ≥ 0 if and only if Cc1

b − Cc2

b ≥ 0 and Cc1
a − Cc2

a ≤ 0 if and
only if Cc1

b − Cc2

b ≤ 0.
2

Proof of proposition 8.5.

On the one hand:

∆D1 = Dc1(i1, j1) − Dc2(i1, j1) = (Cc1
a − Cc2

a ) + mb(i1, j1) (Cc1

b − Cc2

b )

= ∆Ca + mb(i1, j1)∆Cb

Analogously:

∆D2 = Dc1(i2, j2) − Dc2(i2, j2) = (Cc1
a − Cc2

a ) + mb(i2, j2) (Cc1

b − Cc2

b )

= ∆Ca + mb(i2, j2)∆Cb

Therefore, taking into account that mb(i, j) ≥ 0,∀(i, j) and that ∆Ca and ∆Cb have the same sign
by lemma 8.4, ∆D1 ≥ 0 if and only if ∆D2 ≥ 0, and the same applies for ≤. Notice the sign of both
∆D1 and ∆D2 coincide with the common sign of ∆Ca and ∆Cb.

2

Proof of proposition 8.6.

Since at (i, j) does not take place at a material change by hypothesis, the ambient reflection
components vanishes in the first-order derivatives. As a result, the derivatives of the image formation
model including ambient illumination and body reflection coincide with the derivatives of the image
formation model consisting of just body reflection. Therefore, the same proof as of proposition 8.2
applies here.

2

Proof of proposition 8.7.

First, let us introduce the following notation:

∆mb = mb(i1, j1) − mb(i2, j2)

∆Cb = Cc1

b − Cc2

b

Now, the following derives directly from the image formation model Dc = Cc
a + mb(i, j)C

c
b :

(a) Dc(i1, j1) − Dc(i2, j2) = ∆mbC
c
b ,

(b) Dc1(i, j) − Dc2(i, j) ≥ 0 ⇔ ∆Cb ≥ 0 and Dc1(i, j) − Dc2(i, j) ≤ 0 ⇔ ∆Cb ≤ 0, by virtue of the
hypothesis of proportionality between La and Ld and lemma 8.4, and

(c) (Dc1(i1, j1) − Dc2(i1, j1)) − (Dc1(i2, j2) − Dc2(i2, j2)) = ∆mb∆Cb.

Given the previous facts, the proof of proposition 8.5 also applies here.
2

Proof of proposition 8.8.

If the NIR formation model is assumed, then ρi(λ) = ρi,∀λ. Therefore, according to equations 4.1
and 4.6:

Dc(i, j) = mb(i, j)C
c
b (i, j) + mi(i, j)C

c
i (i, j)

= mb(i, j)C
c
b (i, j) + mi(i, j)ρi(i, j)L

c
d

where Lc
d = qc

0

∫
Λ

Ld(λ)τ c(λ)s(λ)dλ is the (scaled) radiance of directional illumination for colour chan-
nel c.
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If Lc
d is assumed to be known for colour channels c1 and c2, then:

∆∗D = Dc1(i, j) − Dc2(i, j)
Lc1

d

Lc2

d

= mb(i, j)C
c1

b (i, j) + mi(i, j)ρi(i, j)L
c1

d − mb(i, j)C
c2

b (i, j)
Lc1

d

Lc2

d

− mi(i, j)ρi(i, j)L
c2

d

Lc1

d

Lc2

d

= mb(i, j)

(
Cc1

b (i, j) − Cc2

b (i, j)
Lc1

d

Lc2

d

)

As a consequence, on the one hand:

∆∗D1 = Dc1(i1, j1) − Dc2(i1, j1)
Lc1

d

Lc2

d

= mb(i1, j1)

(
Cc1

b − Cc2

b

Lc1

d

Lc2

d

)
= mb(i1, j1)∆

∗Cb

Analogously, on the other hand:

∆∗D2 = Dc1(i2, j2) − Dc2(i2, j2)
Lc1

d

Lc2

d

= mb(i2, j2)

(
Cc1

b − Cc2

b

Lc1

d

Lc2

d

)
= mb(i2, j2)∆

∗Cb

Therefore, taking into account that mb(i, j) ≥ 0,∀(i, j), ∆∗D1 ≥ 0 if and only if ∆∗D2 ≥ 0, and
the same applies for ≤. Notice the sign of both ∆∗D1 and ∆∗D2 coincide with the sign of ∆∗Cb, which
is exclusively dependent on the particular surface material and the colour of the illuminant, which is
assumed to be constant throughout the scene.

2

Proof of lemma 8.9.

On the one hand, since ambient reflectance is a linear combination of the body and interface
reflectances:

ρa(λ) = κbρb(λ) + κiρi(λ), κb ≥ 0, κi ≥ 0

Therefore:

Cc1
a − Cc2

a

Lc1

d

Lc2

d

=

qc1
0

∫

Λ

La(λ)ρa(λ)τ c1(λ)s(λ) dλ − qc2
0

(∫

Λ

La(λ)ρa(λ)τ c2(λ)s(λ) dλ

)
Lc1

d

Lc2

d

=

qc1
0 κb

∫

Λ

La(λ)ρb(λ)τ c1(λ)s(λ) dλ − qc2
0 κb

(∫

Λ

La(λ)ρb(λ)τ c2(λ)s(λ) dλ

)
Lc1

d

Lc2

d

+

qc1
0 κi

∫

Λ

La(λ)ρi(λ)τ c1(λ)s(λ) dλ − qc2
0 κi

(∫

Λ

La(λ)ρi(λ)τ c2(λ)s(λ) dλ

)
Lc1

d

Lc2

d

Now, if the NIR model applies here, ρi(λ) = ρi, and if the ambient lighting is proportional to the
directional illumination, La(λ) = αLd(λ):
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Cc1
a − Cc2

a

Lc1

d

Lc2

d

=

qc1
0 κb

∫

Λ

La(λ)ρb(λ)τ c1(λ)s(λ) dλ − qc2
0 κb

(∫

Λ

La(λ)ρb(λ)τ c2(λ)s(λ) dλ

)
Lc1

d

Lc2

d

+

qc1
0 κiρi

∫

Λ

La(λ)τ c1(λ)s(λ) dλ − qc2
0 κiρi

(∫

Λ

La(λ)τ c2(λ)s(λ) dλ

)
Lc1

d

Lc2

d

=

ακb




C
c1
b︷ ︸︸ ︷

qc1
0

∫

Λ

Ld(λ)ρb(λ)τ c1(λ)s(λ) dλ−

C
c2
b︷ ︸︸ ︷

qc2
0

(∫

Λ

Ld(λ)ρb(λ)τ c2(λ)s(λ) dλ

)
Lc1

d

Lc2

d




+

ακiρi




L
c1
d︷ ︸︸ ︷

qc1
0

∫

Λ

Ld(λ)τ c1(λ)s(λ) dλ−

L
c2
d︷ ︸︸ ︷(

qc2
0

∫

Λ

Ld(λ)τ c2(λ)s(λ) dλ

)
Lc1

d

Lc2

d




=

ακb

(
Cc1

b − Cc2

b

Lc1

d

Lc2

d

)

Therefore, given that α ≥ 0 and κb ≥ 0, Cc1
a − Cc2

a
L

c1
d

L
c2
d

≥ 0 if and only if Cc1

b − Cc2

b
L

c1
d

L
c2
d

≥ 0 and

Cc1
a − Cc2

a
L

c1
d

L
c2
d

≤ 0 if and only if Cc1

b − Cc2

b
L

c1
d

L
c2
d

≤ 0.
2

Proof of proposition 8.10.

If the NIR model holds:

Dc(i, j) = Cc
a + mb(i, j)C

c
b + mi(i, j)ρiL

c
d

Therefore, on the one hand:

∆∗D1 = Dc1(i1, j1) − Dc2(i1, j1)
Lc1

d

Lc2

d

=

(
Cc1

a − Cc2
a

Lc1

d

Lc2

d

)
+ mb(i1, j1)

(
Cc1

b − Cc2

b

Lc1

d

Lc2

d

)
+ mi(i1, j1)

(
ρiL

c1

d − ρiL
c2

d

Lc1

d

Lc2

d

)

= ∆∗Ca + mb(i1, j1)∆
∗Cb

Analogously:

∆∗D2 = Dc1(i2, j2) − Dc2(i2, j2)
Lc1

d

Lc2

d

= ∆∗Ca + mb(i2, j2)∆
∗Cb

Now, given the proportionality between ambient and directional illumination, and resorting to the
proof of lemma 8.9, clearly ∆∗Ca ≥ 0 if and only if ∆∗Cb ≥ 0, and analogously for case ≤. Therefore,
since mb(i, j) ≥ 0,∀(i, j), then the signs of both ∆∗D1 and ∆∗D2 coincide with the common sign of
∆∗Ca and ∆∗Cb.

2

Proof of proposition 8.11.

First, let us introduce the following notation:

∆∗Ca(i, j) = Cc1
a (i, j) − Cc2

a (i, j)
Lc1

d

Lc2

d

∆∗Cb(i, j) = Cc1

b (i, j) − Cc2

b (i, j)
Lc1

d

Lc2

d
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(1) On the one hand:

Dc1(i1, j1) − Dc2(i1, j1)
Lc1

d

Lc2

d

≥ 0

⇔ Cc1
a (i1, j1) − Cc2

a (i1, j1)
Lc1

d

Lc2

d

+

mb(i1, j1)

(
Cc1

b (i1, j1) − Cc2

b

Lc1

d

Lc2

d

)
+ mi(i1, j1)

(
ρiL

c1

d − ρiL
c2

d

Lc1

d

Lc2

d

)
≥ 0

⇔ ∆∗Ca(i1, j1) + mb(i1, j1)∆
∗Cb(i1, j1) ≥ 0

Due to the proportionality between ambient illumination and directional illumination, ∆∗Ca =
α∆∗Cb (see the proof of lemma 8.9). Therefore, since mb(i, j) ≥ 0,∀(i, j):

∆∗Ca(i1, j1) + mb(i1, j1)∆
∗Cb(i1, j1) ≥ 0 ⇔ ∆∗Cb(i1, j1) ≥ 0

On the other hand:

Dc1(i2, j2) − Dc2(i2, j2)
Lc1

d

Lc2

d

≤ 0 ⇔ ∆∗Ca(i2, j2) + mb(i2, j2)∆
∗Cb(i2, j2) ≤ 0

By the same reasons as before:

∆∗Ca(i2, j2) + mb(i2, j2)∆
∗Cb(i2, j2) ≤ 0 ⇔ ∆∗Cb(i2, j2) ≤ 0

(2) See the proof of case (1) just exchanging (i1, j1) and (i2, j2).

2

Proof of proposition 8.12.

First, let us introduce the following notation:

Cc
a(ik, jk) = Cc

a,k

Cc
b (ik, jk) = Cc

b,k

mb(ik, jk) = mb,k

(1) On the one hand:

Dc1(i1, j1) − Dc1(i2, j2) = Cc1
a,1 + mb,1C

c1

b,1 − Cc1
a,2 − mb,2C

c1

b,2 > 0

Due to the proportionality between ambient and directional illumination, Cc
a(i, j) = αCc

b (i, j) (see
the proof of lemma 8.4). Therefore:

Cc1
a,1 + mb,1C

c1

b,1 − Cc1
a,1 − mb,2C

c1

b,2 > 0

⇒ (α + mb,1)C
c1

b,1 > (α + mb,2)C
c1

b,2

⇒ α + mb,1

α + mb,2
>

Cc1

b,2

Cc1

b,1

On the other hand:

Dc2(i1, j1) − Dc2(i2, j2) = Cc2
a,1 + mb,1C

c2

b,1 − Cc2
a,2 − mb,2C

c2

b,2 < 0

As before:

Cc2
a,1 + mb,1C

c2

b,1 − Cc2
a,1 − mb,2C

c2

b,2 < 0

⇒ (α + mb,1)C
c2

b,1 < (α + mb,2)C
c2

b,2

⇒ α + mb,1

α + mb,2
<

Cc2

b,2

Cc2

b,1
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Finally:

Cc1

b,2

Cc1

b,1

<
α + mb,1

α + mb,2
<

Cc2

b,2

Cc2

b,1

⇒
Cc2

b,1

Cc1

b,1

<
Cc2

b,2

Cc1

b,2

(2) In a similar way as in case (1), the following derives directly from the hypothesis:

α + mb,1

α + mb,2
<

Cc1

b,2

Cc1

b,1

α + mb,1

α + mb,2
>

Cc2

b,2

Cc2

b,1

Therefore:

Cc1

b,2

Cc1

b,1

>
α + mb,1

α + mb,2
>

Cc2

b,2

Cc2

b,1

⇒
Cc2

b,1

Cc1

b,1

>
Cc2

b,2

Cc1

b,2

2

Proof of proposition 8.13.

First, let us introduce the following notation:

Cc
a(ik, jk) = Cc

a,k

Cc
b (ik, jk) = Cc

b,k

mb(ik, jk) = mb,k

(1) Due to the proportionality between ambient and directional illumination, Cc
a(i, j) = αCc

b (i, j) (see
the proof of lemma 8.4). Therefore:

Dc1(i1, j1) ≥ Dc1(i2, j2) ⇒ Cc1
a,1 + mb,1C

c1

b,1 ≥ Cc1
a,2 + mb,2C

c1

b,2

⇒ (α + mb,1)C
c1

b,1 ≥ (α + mb,2)C
c1

b,2

⇒ α + mb,1

α + mb,2
≥

Cc1

b,2

Cc1

b,1

Analogously:

Dc2(i1, j1) ≥ Dc2(i2, j2) ⇒
α + mb,1

α + mb,2
≥

Cc2

b,2

Cc2

b,1

On the other hand:

Dc1(i1, j1) ≥ Dc2(i1, j1) ⇒ Cc1
a,1 + mb,1C

c1

b,1 ≥ Cc2
a,1 + mb,1C

c2

b,1

⇒ (α + mb,1)C
c1

b,1 ≥ (α + mb,1)C
c2

b,1 ⇒ Cc1

b,1 ≥ Cc2

b,1

Analogously:

Dc1(i2, j2) ≥ Dc2(i2, j2) ⇒ Cc1

b,2 ≥ Cc2

b,2

Using the last hypothesis:

Dc1(i1, j1) − Dc2(i1, j1) < Dc1(i2, j2) − Dc2(i2, j2)

⇒ (α + mb,1)

≥0︷ ︸︸ ︷(
Cc1

b,1 − Cc2

b,1

)
< (α + mb,2)

≥0︷ ︸︸ ︷(
Cc1

b,2 − Cc2

b,2

)

⇒ α + mb,1 < α + mb,2 ⇒ α + mb,1

α + mb,2
< 1
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Therefore:

α+mb,1

α+mb,2
≥ C

c1
b,2

C
c1
b,1

α+mb,1

α+mb,2
≥ C

c2
b,2

C
c2
b,1

α+mb,1

α+mb,2
< 1





⇒





Cc1

b,1 > Cc1

b,2

Cc2

b,1 > Cc2

b,2

(2) Taking into account the proof for case (1):

Dc1(i1, j1) ≤ Dc1(i2, j2) ⇒ α+mb,1

α+mb,2
≤ C

c1
b,2

C
c1
b,1

Dc2(i1, j1) ≤ Dc2(i2, j2) ⇒ α+mb,1

α+mb,2
≤ C

c2
b,2

C
c2
b,1

Dc1(i1, j1) ≤ Dc2(i1, j1) ⇒ Cc1

b,1 ≤ Cc2

b,1

Dc1(i2, j2) ≤ Dc2(i2, j2) ⇒ Cc1

b,2 ≤ Cc2

b,2

Dc1(i1, j1) − Dc2(i1, j1) < Dc1(i2, j2) − Dc2(i2, j2)

⇒ (α + mb,1)

≤0︷ ︸︸ ︷(
Cc1

b,1 − Cc2

b,1

)
< (α + mb,2)

≤0︷ ︸︸ ︷(
Cc1

b,1 − Cc2

b,1

)

⇒ α + mb,1 > α + mb,2 ⇒ α+mb,1

α+mb,2
> 1





⇒





Cc1

b,1 < Cc1

b,2

Cc2

b,1 < Cc2

b,2

(3) Taking into account the proof for case (1):

Dc1(i1, j1) ≥ Dc1(i2, j2) ⇒ α+mb,1

α+mb,2
≥ C

c1
b,2

C
c1
b,1

Dc2(i1, j1) ≥ Dc2(i2, j2) ⇒ α+mb,1

α+mb,2
≥ C

c2
b,2

C
c2
b,1

Dc1(i1, j1) ≤ Dc2(i1, j1) ⇒ Cc1

b,1 ≤ Cc2

b,1

Dc1(i2, j2) ≤ Dc2(i2, j2) ⇒ Cc1

b,2 ≤ Cc2

b,2

Dc1(i1, j1) − Dc2(i1, j1) > Dc1(i2, j2) − Dc2(i2, j2)

⇒ (α + mb,1)

≤0︷ ︸︸ ︷(
Cc1

b,1 − Cc2

b,1

)
> (α + mb,2)

≤0︷ ︸︸ ︷(
Cc1

b,1 − Cc2

b,1

)

⇒ α + mb,1 < α + mb,2 ⇒ α+mb,1

α+mb,2
< 1





⇒





Cc1

b,1 > Cc1

b,2

Cc2

b,1 > Cc2

b,2

(4) Taking into account the proof for case (1):

Dc1(i1, j1) ≤ Dc1(i2, j2) ⇒ α+mb,1

α+mb,2
≤ C

c1
b,2

C
c1
b,1

Dc2(i1, j1) ≤ Dc2(i2, j2) ⇒ α+mb,1

α+mb,2
≤ C

c2
b,2

C
c2
b,1

Dc1(i1, j1) ≥ Dc2(i1, j1) ⇒ Cc1

b,1 ≥ Cc2

b,1

Dc1(i2, j2) ≥ Dc2(i2, j2) ⇒ Cc1

b,2 ≥ Cc2

b,2

Dc1(i1, j1) − Dc2(i1, j1) > Dc1(i2, j2) − Dc2(i2, j2)

⇒ (α + mb,1)

≥0︷ ︸︸ ︷(
Cc1

b,1 − Cc2

b,1

)
> (α + mb,2)

≥0︷ ︸︸ ︷(
Cc1

b,1 − Cc2

b,1

)

⇒ α + mb,1 > α + mb,2 ⇒ α+mb,1

α+mb,2
> 1





⇒





Cc1

b,1 < Cc1

b,2

Cc2

b,1 < Cc2

b,2

2
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Proof of proposition 8.14.

First, let us introduce the following notation:

∆Ca(i, j) = Cc1
a (i, j) − Cc2

a (i, j)

∆Cb(i, j) = Cc1

b (i, j) − Cc2

b (i, j)

(1) On the one hand:

Dc1(i1, j1) − Dc2(i1, j1) > 0 ⇔ ∆Ca(i1, j1) + mb(i1, j1)∆Cb(i1, j1) > 0

Due to the proportionality between ambient illumination and directional illumination, ∆Ca =
α∆Cb (see the proof of lemma 8.4). Therefore, since mb(i, j) ≥ 0,∀(i, j):

∆Ca(i1, j1) + mb(i1, j1)∆Cb(i1, j1) > 0 ⇔ ∆Cb(i1, j1) > 0

On the other hand:

Dc1(i2, j2) − Dc2(i2, j2) < 0 ⇔ ∆Ca(i2, j2) + mb(i2, j2)∆Cb(i2, j2) < 0

By the same reasons as before:

∆Ca(i2, j2) + mb(i2, j2)∆Cb(i2, j2) < 0 ⇔ ∆Cb(i2, j2) < 0

(2) See the proof of case (1) just exchanging (i1, j1) and (i2, j2).

2





C

Reflectance Transitions Covered by the C Compatibility Relation

As propositions 8.11 and 8.14 show, a transition of type CHC means a change in the order relationship
among the different components of the reflectance vector; that is to say, the reflectance for colour
channel c1 is above the reflectance for colour channel c2 on one side of the transition, while on the
other side this ordering is reversed. Observe that for a 3-colour-channel imaging sensor (i.e. a typical
RGB camera) there are 3! = 6 such possible orderings: RGB, RBG, GRB, GBR, BRG and BGR,
where, in particular and by way of notation from now on, RGB comprises all the reflectance triplets
(ρR

b , ρG
b , ρB

b ) such that ρR
b > ρG

b > ρB
b . Consequently, if the space of all possible reflectance triplets is

considered, a certain ordering (i.e. the set of all the triplets (ρR
b , ρG

b , ρB
b ) whose components present

the same ordering) corresponds to a sixth of this space. Figure C.1(a) shows the space of all possible
reflectance triplets over a cube of unit side, and also the volume corresponding to all the reflectance
triplets such that ρR

b > ρG
b > ρB

b , or RGB zone.
Therefore, a reflectance change, let us say, from RGB zone to RBG zone, represents 1/6×1/6 = 1/36

of all possible reflectance transitions. This can also be derived integrating the hypervolume of all
possible transitions from one zone to a different one. By way of illustration, equation C.1 accounts for
all possible transitions from RGB to RBG: (in equation C.1,

(
(ρR

b )1, (ρ
G
b )1, (ρ

B
b )1

)
are the variables

used for integrating within the RGB volume, while
(
(ρR

b )2, (ρ
G
b )2, (ρ

B
b )2

)
are for integrating inside the

RBG volume.)

(a) (b)

Fig. C.1. Space of reflectance triplets for a 3-colour-channel imaging sensor: in (a) the coloured vol-
ume corresponds to the subspace of reflectance triplets where ρR

b > ρG
b > ρB

b (RGB zone), while in (b)
the coloured volume is the subspace of reflectance triplets

(
ρR

b , ρG
b , ρB

b

)
, where, given

(
(ρR

b )0, (ρ
G
b )0, (ρ

B
b )0

)
,

(ρR
b )0 < ρR

b and (ρG
b )0 < ρG

b and (ρB
b )0 > ρB

b .
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∫ 1

0

∫ (ρR
b )1

0

∫ (ρG
b )1

0

∫ 1

0

∫ (ρR
b )2

0

∫ (ρB
b )2

0

d(ρG
b )2 d(ρB

b )2 d(ρR
b )2 d(ρB

b )1 d(ρG
b )1 d(ρR

b )1 =
1

36
. (C.1)

On the other hand, the number of types of CHC reflectance changes corresponds to variations of
2 elements out of 6, V2,6 = 6!/(6 − 2)! = 30 (i.e. there are 6 possible orderings and a CHC reflectance
change consists in a transition from any of these 6 to a different one, among the remaining 5). Therefore,
a CHC reflectance change represents 30/36×100 = 83.33% of the total number of possible transitions.
The other 6 cases correspond to transitions where there is no change in the ordering among the
reflectance vector components (i.e. from RGB to RGB, from RBG to RBG, from GRB to GRB, etc).

As for NCD and NDD reflectance changes, it is not as easy as for CHC transitions to determine the
percentage of reflectance transitions covered by them in the light of propositions 8.12 and 8.13. The
problem is that these propositions are not double implications (remember the discussion about this
point in section 8.4 and the cases of figures 8.3 and 8.5). Therefore, if, by way of example, reflectance
changes from a given

(
(ρR

b )0, (ρ
G
b )0, (ρ

B
b )0

)
to any

(
ρR

b , ρG
b , ρB

b

)
such that, for any pair of colour channels

c1 and c2:

(ρc1

b )0 > ρc1

b and (ρc2

b )0 > ρc2

b , or (ρc1

b )0 < ρc1

b and (ρc2

b )0 < ρc2

b (see table 8.2) (C.2)

were accounted for, this would not mean accounting for exclusively reflectance changes of the NDD
type. That is to say, if reflectance changes such as the ones of C.2 were counted, as before with CHC
transitions, the final number would include more transitions than the wanted ones.

Moreover, the reflectance changes expressed in C.2 cover all the possible transitions. In effect, given
a certain triplet of reflectances

(
(ρR

b )0, (ρ
G
b )0, (ρ

B
b )0

)
, the dashed lines of figure C.1(b) divide the space

of reflectance triplets
(
ρR

b , ρG
b , ρB

b

)
into the eight zones for which the reflectances for at least two colour

channels are simultaneously larger or smaller than the respective components of
(
(ρR

b )0, (ρ
G
b )0, (ρ

B
b )0

)
,

according to C.2. In particular, for the coloured volume of figure C.1(b):

(ρR
b )0 < ρR

b and (ρG
b )0 < ρG

b and (ρB
b )0 > ρB

b . (C.3)

Therefore, all the transitions from
(
(ρR

b )0, (ρ
G
b )0, (ρ

B
b )0

)
to

(
ρR

b , ρG
b , ρB

b

)
such that at least any two of

ρR
b , ρG

b or ρB
b are simultaneously larger or smaller than the corresponding (ρR

b )0, (ρG
b )0 or (ρB

b )0 involve
the whole space of transitions from

(
(ρR

b )0, (ρ
G
b )0, (ρ

B
b )0

)
.

Therefore, by way of conclusion, it can be said that the compatibility relationship C covers more
than the 83.33% of the total of possible reflectance transitions. Unfortunately, the only upper bound
which can be given about the percentage of reflectance transitions caught is just 100%.
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The Possibilistic C-means Algorithm (PCM)

D.1 General Formulation of PCM

PCM is an iterative clustering method which assigns a possibility uij ∈ [0, 1] to every point of the
data set xi depending on its distance to everyone of the considered clusters, parameterized each by
θj , and then recomputes the θj ’s using all the points of the data set weighted by their possibilities of
pertaining to the cluster. After convergence, θ ≡ [θ1, . . . , θC ] is the set of final cluster representatives
and uij gives the degree of compatibility of xi with the jth cluster representative, or, in other words,
the possibility that xi belongs to the jth cluster.

More formally, given a number of clusters, C, the set of data points, X = [x1, x2, . . . , xN ], and
a distance function between data points and cluster representatives, d(xi, θj), PCM minimizes the
following cost function [133]:

J(θ, U) =

C∑

j=1

N∑

i=1

uq
ijd(xi, θj) +

C∑

j=1

ηj

N∑

i=1

(1 − uij)
q , (D.1)

where q and ηj are parameters of PCM, and U = [uij ]N×C is such that:

• uij ∈ [0, 1],
• maxj=1,...,C{uij} > 0, i = 1, . . . , N , and

• 0 <
∑N

i=1 uij ≤ N, j = 1, . . . , C.

In this context, uij may be interpreted as the degree of compatibility of xi with the jth cluster
representative, what only depends on xi and the cluster representative of the jth cluster. That is, it is
independent of the possibilities that xi belongs to the other clusters. On the other hand, the first term
of equation D.1 is the sum of the weighted distances of points xi to the current cluster representatives,
while the second term avoids the trivial solution uij = 0 and minimizes the effects of outliers.

Differentiating D.1 with respect to uij and setting it to 0 leads to the equation:

uij =
1

1 +
(

d(xi,θj)
ηj

) 1
q−1

(D.2)

while, given the matrix U , the optimum θj is given by:

N∑

i=1

uq
ij

∂d(xi, θj)

∂θj
= 0 (D.3)

The PCM algorithmic scheme derives from equations D.2 and D.3, and is given in pseudocode D.1
[276]. As usual, ||θ(t)−θ(t−1)|| < ǫ can be employed as a termination criterion. Based on the preceding
generalized scheme, a number of possibilistic clustering algorithms can be defined by adapting the
distance function to the problem at hand [133,134].
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Pseudocode D.1 Algorithmic formulation of PCM.

(1) initialization
set ηj and q to appropriate values
t := 0 and choose initial estimates for θj(t)

(2) repeat
for i := 1 to N
for j := 1 to C

uij(t) := 1

1+

(
d(xi,θj(t))

ηj

) 1
q−1

endfor
endfor
t := t + 1
for j := 1 to C

solve
∑N

i=1 uq
ij(t−1)

∂d(xi,θj)

∂θj
= 0 for θj , and

set θj(t) accordingly
endfor

until a termination criterion is met

D.2 Meaning and Importance of PCM Parameters

On the one hand, the ηj ’s determine the distance at which the possibilities uij ’s become 0.5. In this
sense, it is said they determine the zone of influence of any point: if the distance between a data point
xi and cluster θj is large compared with ηj , xi will have little influence when updating θj . Because of
this, ηj is referred to as the scale, bandwidth or resolution parameter for cluster θj . Consequently, in
general, it is desirable that the ηj ’s are related to the overall size and shape of the respective cluster
θj . In practice, it is chosen proportional to the average fuzzy intracluster distance of cluster θj :

ηj =

∑N
i=1 uq

ijd(xi, θj)
∑N

i=1 uq
ij

, (D.4)

which implies running first the fuzzy C-means (FCM) clustering algorithm [276], from which a first
estimation of matrix U is obtained. However, when the nature of the clusters is known, the ηj ’s can
be fixed a priori, such as in the case of line or hyperplane clustering algorithms. In such cases, the
clusters are expected to be thin lines or planes and the ηj ’s can be set to the respective expected
thicknesses [133].

On the other hand, q determines the rate of decay of the possibility distribution and, thus, its

shape. Figure D.1 plots uij as a function of
d(xi,θj)

ηj
for several values of q. As can be seen, increasing

values of q represent increased possibility of all points in the data set completely belonging to a given
cluster. In this sense, it is said q determines the fuzziness of the final possibilistic partition and is
referred to as the fuzzifier.

D.3 PCM as a Mode-Seeking Algorithm

Contrarily to the behaviour of other clustering algorithms, such as FCM, which partitions the data set
in the specified number of clusters, PCM is a mode-seeking algorithm. That is to say, cluster prototypes
are automatically attracted to dense regions in feature space as iterations proceed, and, therefore, each
final cluster corresponds to a dense region in the data set [134].

The most important consequence of this property is that, provided the θj ’s are initially placed in
different dense regions of the data set, the number of clusters need not be known a priori. In effect, if
PCM is run for C1 clusters when the data set naturally contains C2 < C1, some of the C1 clusters will
coincide with others, so that, probably, only C2 different clusters will have been reported. If C2 > C1,
PCM can potentially find C1 good clusters out of the real C2. In this sense, PCM recognizes the
structure of the data better.
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Index

1/f noise, 30

absorption coefficient, 25
accuracy, 67
albedo

diffuse, 16
ambient composite reflectance, 61
ambient lighting, 20
ambient reflectance, 21
amplifier noise, 30
angle of exitance, 19
angle of incidence, 19
Approximate Color Reflectance Model (ACRM), 20

Baddeley’s measure, 77
Bayer colour filter array, 26
beam-splitter prism, 26
Beckmann-Spizzichino model, 17
bidirectional reflectance distribution function

(BRDF), 11
bidirectional spectral-reflectance distribution function

(BSRDF), 11
blooming, 32
body composite reflectance, 61
body reflectance, 16
body reflection, 12, 14

Lambert model, 14
Oren and Nayar model, 16
Wolff model, 16

cameras
Bayer colour filter array, 26
beam-splitter prism, 26
colour filter array, 26
complementary colour mosaic, 27
demosaicking, 27
F-number, 23
filter transmittance, 22
gamma correction, 32
integration or exposure time, 25, 28
primary colour mosaic, 27
spatial response, 28
spectral responsivity, 22
vignetting, 31

Charge Coupled Device (CCD), 24
1/f noise or flicker noise, 30
absorption coefficient, 25
amplifier noise, 30
blooming, 32
Charge Transfer Efficiency (CTE), 25
clipping, 32
correlated double sampling, 30
dark current, 28
dark current non-uniformity (DCNU), 28
dark current shot noise, 29
dark or thermal electrons, 28
fixed pattern noise, 28
Frame Interline Transfer (FIT) CCD, 26
Frame Transfer (FT) CCD, 26
Full Frame (FF), 25
infrared cut-off filter, 32
Interline Transfer (IL) CCD, 26
multi-pinned phase technology, 28
non-spatial or random noise, 64
pattern noise, 28
photo-response non-uniformity (PRNU), 28
photoelectrons, 25
photon or shot noise, 29
pre-kneeing, 32
quantization noise, 30
quantum efficiency, 25
readout noise, 30
recombination lifetime, 25
reset noise or kTC noise, 30
shading, 28
spatial noise, 64
thermoelectric coolers, 28

Charge Transfer Efficiency (CTE), 25
clipping, 32
colour filter array, 26
complementary colour mosaic, 27
composite reflectance

ambient, 61
body, 61
interface, 61

confusion matrix, 66
contingency matrix, 67
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correlated double sampling, 30

dark current, 28
dark current non-uniformity (DCNU), 28
dark current shot noise, 29
dark electrons, 28
demosaicking, 27
Dichromatic Reflection Model (DRM), 19
diffuse albedo, 16
Discrepancy Percentage, 77

error matrix, 67
exposure time, 25, 28

F-number, 23
false negative, 67
false positive, 67
filter transmittance, 22
fixed pattern noise, 28
flicker noise, 30
foreshortened area, 10
Frame Interline Transfer (FIT) CCD, 26
Frame Transfer (FT) CCD, 26
Fresnel term, 18
Full Frame (FF) CCD, 25

gamma correction, 32
generalized confusion matrix, 67

Healey model, 19
hybrid reflection, 19

Approximate Color Reflectance Model (ACRM),
20

Dichromatic Reflection Model (DRM), 19

infrared cut-off filter, 32
integrated white condition, 45, 48–53
integration time, 25, 28
inter-reflection, 21
interface composite reflectance, 61
interface reflectance, 13
interface reflection, 12, 13

Beckmann-Spizzichino model, 17
Healey model, 19
Neutral Interface Reflection Model (NIR), 20
Phong model, 19
Torrance-Sparrow model, 17
Unichromatic Reflection Model for metals (URM),

20
Interline Transfer (IL) CCD, 26
irradiance, 10

kTC noise, 30
Kubelka-Munk theory, 20

Lambert Cosine Law, 15
Lambert model, 14
Lambertian surface

ideal, 14

lighting
ambient, 20

material
dielectric, 12, 13
metal, 12
optically homogeneous, 12
optically inhomogeneous, 12
skin depth, 12

mean error distance, 77
mean square error distance, 77
multi-class type I error, 67
multi-class type II error, 67
multi-pinned phase technology, 28

Neutral Interface Reflection Model (NIR), 20
non-spatial noise, 64

Oren and Nayar model, 16
over-segmentation, 68

pattern noise, 28
percentage of correctly grouped pixels (CG), 69
percentage of over-segmentation (OS), 69
percentage of under-segmentation (US), 69
perceptual colour, 62
performance evaluation

analythical methods, 65
edge detection evaluation

Baddeley’s measure, 77
Discrepancy Percentage, 77
mean error distance, 77
mean square error distance, 77
Pratt’s Figure of Merit (FOM), 77

empirical discrepancy methods, 65
accuracy, 67
confusion matrix, 66
contingency matrix, 67
error matrix, 67
false negative, 67
false positive, 67
generalized confusion matrix, 67
multi-class type I error, 67
multi-class type II error, 67
Receiver Operating Characteristic (ROC) curve

analysis, 68
type I error, 67
type I error rate, 67
type II error, 67
type II error rate, 67

empirical goodness methods, 65
empirical methods, 65
over-segmentation, 68
percentage of correctly grouped pixels (CG), 69
percentage of over-segmentation (OS), 69
percentage of under-segmentation (US), 69
under-segmentation, 68

phase angle, 19
Phong model, 19
photoelectrons, 25
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photometric angles, 19
angle of exitance, 19
angle of incidence, 19
phase angle, 19

photon noise, 29
Pratt’s Figure of Merit (FOM), 77
pre-kneeing, 32
primary colour mosaic, 27

quantization noise, 30
quantum efficiency, 25

radiance, 10
spectral, 11

radiant exitance, 10
radiant flux, 10
radiant intensity, 10
radiometric calibration, 64
random noise, 64
readout noise, 30
Receiver Operating Characteristic (ROC) curve

analysis, 68
recombination lifetime, 25
reflectance

ambient, 21
body, 16
interface, 13

reflectance map, 14
reflection

body, 12, 14
diffuse, 12
inter-reflection, 21
interface, 12, 13

ideal specular reflector, 17
models, 14

Approximate Color Reflectance Model (ACRM),
20

Beckmann-Spizzichino, 17
Dichromatic Reflection Model (DRM), 19
Fresnel term, 18
Healey, 19
hybrid, 19
ideal Lambertian surface, 14
integrated white condition, 45, 48–53
interface, 17
Lambert, 14
Lambert Cosine Law, 15
Neutral Interface Reflection Model (NIR), 20
Oren and Nayar, 16
Phong, 19
Torrance-Sparrow, 17
Unichromatic Reflection Model for metals

(URM), 20
Wolff, 16

photometric angles, 19
angle of exitance, 19
angle of incidence, 19
phase angle, 19

reflectance map, 14

specular, 12
surface roughness, 18

refraction
complex index, 12

Reichman body-scattering model, 20
reset noise, 30

scene noise, 78
segmentation methods

general
edge- or contour-based, 35
pixel- or feature-space-based, 36
region- or area-based, 35

physics-based
cluster-analysis-based, 38
continuity-of-the-image-surface-based, 38
photometric-invariant-based, 38
reflectance-estimation-based, 38

shading, 28
Shape from Motion, 139
Shape from Photometric Stereo, 139
Shape from Shading (SFS), 139, 140

domain of attraction of an LMSP, 146
global minimization methods, 145
global shape reconstruction algorithm, 146
linear methods, 145
local methods, 145
Local Minimum/Maximum Singular Point (LMSP),

146
local shape reconstruction algorithm, 146
propagation methods, 145
singular point, 144

Shape from Stereo, 139
Shape from Texture, 139
Shape from X, 139

Shape from Motion, 139
Shape from Photometric Stereo, 139
Shape from Shading (SFS), 139, 140
Shape from Stereo, 139
Shape from Texture, 139

shot noise, 29
singular point, 144
skin depth, 12
solid angle, 9
spatial noise, 64
spatial response, 28
spectral power distribution (SPD), 11

relative, 11
spectral responsivity, 22
specular reflector

ideal, 17
surface roughness, 18

thermal electrons, 28
thermoelectric coolers, 28
Torrance-Sparrow model, 17
type I error, 67
type I error rate, 67
type II error, 67
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type II error rate, 67

under-segmentation, 68
Unichromatic Reflection Model for metals (URM), 20

vignetting, 31

Wolff model, 16


